首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Automated colitis detection from endoscopic biopsies as a tissue screening tool in diagnostic pathology
【24h】

Automated colitis detection from endoscopic biopsies as a tissue screening tool in diagnostic pathology

机译:从内窥镜活检中自动检测结肠炎,作为诊断病理学中的组织筛选工具

获取原文

摘要

We present a method for identifying colitis in colon biopsies as an extension of our framework for the automated identification of tissues in histology images. Histology is a critical tool in both clinical and research applications, yet even mundane histological analysis, such as the screening of colon biopsies, must be carried out by highly-trained pathologists at a high cost per hour, indicating a niche for potential automation. To this end, we build upon our previous work by extending the histopathology vocabulary (a set of features based on visual cues used by pathologists) with new features driven by the colitis application. We use the multiple-instance learning framework to allow our pixel-level classifier to learn from image-level training labels. The new system achieves accuracy comparable to state-of-the-art biological image classifiers with fewer and more intuitive features.
机译:我们提出了一种在结肠活检中识别结肠炎的方法,作为我们在组织学图像中自动识别组织的框架的扩展。组织学在临床和研究应用中都是至关重要的工具,但是即使是常规的组织学分析,例如结肠活检的筛查,也必须由训练有素的病理学家以每小时高昂的成本进行,这表明潜在的自动化领域尤为重要。为此,我们以结肠炎应用程序驱动的新功能扩展了组织病理学词汇表(一组基于病理学家使用的视觉提示的功能),以此扩展了我们以前的工作。我们使用多实例学习框架来允许我们的像素级分类器从图像级训练标签中学习。新系统以更少,更直观的功能实现了与最新生物图像分类器相当的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号