首页> 外文会议>IEEE International Conference on Image Processing;ICIP 2012 >Robust hierarchical multiple hypothesis tracker for multiple object tracking
【24h】

Robust hierarchical multiple hypothesis tracker for multiple object tracking

机译:鲁棒的分层多假设跟踪器,用于多对象跟踪

获取原文

摘要

Robust multiple object tracking is the backbone of many higher-level applications such as people counting, behavioral analytics and biomedical imaging. We enhance multiple hypothesis tracker robustness to the problems of split, merge, occlusion and fragment through hierarchical approach. Foreground segmentation and clustered optical flow are used as the first-level tracker input. Only associated track of the first level is fed into the second level with the additional of two virtual measurements. Occlusion predictor is obtained by using the predicted data of each track to distinguish between merge and occlusion. Kalman filter is used to predict and smooth the track's state. Gaussian modelling is used to measure the quality of the hypotheses. Histogram intersection is applied to limit the size expansion of the track. The results show improvement both in terms of accuracy and precision compared to the benchmark trackers [1, 2].
机译:强大的多对象跟踪是许多高级应用程序(例如人数统计,行为分析和生物医学成像)的基础。我们通过分层方法增强了多个假设跟踪器的鲁棒性,以解决拆分,合并,遮挡和碎片问题。前景分割和群集光流用作第一级跟踪器输入。除了两个虚拟测量值之外,仅第一级的关联轨迹被馈入第二级。通过使用每个磁道的预测数据来区分合并和遮挡来获得遮挡预测器。卡尔曼滤波器用于预测和平滑轨道的状态。高斯建模用于衡量假设的质量。应用直方图相交以限制轨道的大小扩展。结果表明,与基准跟踪器相比[1,2]在准确性和精确度上都有改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号