首页> 外文会议>IEEE International Conference on Computer and Communication Systems >A Face Detection Framework Based on Deep Cascaded Full Convolutional Neural Networks
【24h】

A Face Detection Framework Based on Deep Cascaded Full Convolutional Neural Networks

机译:基于深度级联全卷积神经网络的人脸检测框架

获取原文

摘要

In practical applications, the collected face images are often affected by the surrounding environment, resulting in multiple expressions, multiple poses, occlusion, light intensity, and complex background issues in face detection. Hence this paper presents a novel face detection framework based on deep cascaded full convolutional neural networks (CNNs) to solve the mentioned issues in face detection. This frame work supports face detection, and positioning of face key points at the same time by using its 3-order cascaded CNN architecture. The 3-order cascaded architecture is a combination of three phases of network layers; phasel (I-Net, Initial Network), phase2 (A-Net, Advanced Network), and phase3 (U-Net, Ultimate Network). In the CNN design, a depthwise separable convolution is used instead of the traditional convolution, and also a convolutional layer with stride of 2 is used instead of the pooling layer. A bottleneck structure (1x1 convolution kernel structure) is used for convolution layer, and the network uses a convolutional layer instead of the fully connected layer (FC). The carried-out experiments proved that the presented framework is an effective one for face detection applications.
机译:在实际应用中,所收集的人脸图像通常会受到周围环境的影响,从而导致在人脸检测中出现多种表情,多种姿势,遮挡,光线强度以及复杂的背景问题。因此,本文提出了一种基于深度级联全卷积神经网络(CNN)的新颖人脸检测框架,以解决人脸检测中提到的问题。该框架通过使用其3阶级联CNN架构,支持面部检测以及面部关键点的定位。 3阶级联架构是网络层的三个阶段的组合。阶段1(I-Net,初始网络),阶段2(A-Net,高级网络)和阶段3(U-Net,终极网络)。在CNN设计中,使用了深度可分离的卷积代替了传统的卷积,并且还使用了步长为2的卷积层代替了池化层。瓶颈结构(1x1卷积内核结构)用于卷积层,并且网络使用卷积层而不是完全连接层(FC)。进行的实验证明,所提出的框架对于人脸检测应用是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号