首页> 外文会议>IEEE International Conference on Cognitive Machine Intelligence >Deployment of Deep Learning Models to Mobile Devices for Spam Classification
【24h】

Deployment of Deep Learning Models to Mobile Devices for Spam Classification

机译:将深度学习模型部署到移动设备以进行垃圾邮件分类

获取原文

摘要

The advent of deep learning brings the possibility of better and faster applications in real world. In this work, deep learning models are used for application of spam classification in mobile devices. A Binary Classification model is trained with deep learning and is transformed to a graph using tensorflow and then, is converted to a protobuf file to be deployed on mobile devices. Instead of looking into the spam messages in an algorithmic way i.e. just with keywords, binary model deals with experience of learning and predicts if a text message is spam. The training was performed multiple times on resource-deficient devices and hyper-parameter optimization was performed to enhance the training accuracy to 99.87 %. The test accuracy of mobile application is 98.7 % and testing happens in real-time without any internet access. Our simulation shows that a model with an embedding layer (size 128), an LSTM layer (size 64, dropout 0.2) and a dense layer (sigmoid) yields the highest performance. Also, the comparative evaluation with state-of-the-art methods displayed that our model achieves higher accuracy.
机译:深度学习的到来带来了在现实世界中更好,更快地应用的可能性。在这项工作中,深度学习模型用于在移动设备中应用垃圾邮件分类。二进制分类模型经过深度学习训练,并使用张量流转换为图,然后转换为protobuf文件以部署在移动设备上。二进制模型不是以算法的方式(即仅使用关键字)研究垃圾邮件,而是处理学习经验并预测文本消息是否为垃圾邮件。在资源匮乏的设备上进行了多次训练,并进行了超参数优化,以将训练准确性提高到99.87%。移动应用程序的测试准确性为98.7%,并且无需任何Internet访问即可实时进行测试。我们的仿真显示,具有嵌入层(尺寸128),LSTM层(尺寸64,压降0.2)和致密层(S型)的模型产生了最高的性能。此外,通过最先进的方法进行的比较评估表明,我们的模型具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号