首页> 外文会议>IEEE International Conference on Big Data Analytics >Vessel Sailing Patterns Analysis from S-AIS Data Dased on K-means Clustering Algorithm
【24h】

Vessel Sailing Patterns Analysis from S-AIS Data Dased on K-means Clustering Algorithm

机译:基于K均值聚类算法的S-AIS数据船舶航行模式分析。

获取原文

摘要

Automatic Identification System (AIS) provides abundant near real-time information of moving vessels in the sea of the whole world and has been widely used in the fields of vessel collision avoidance, Maritime Situation Awareness (MSA) and ocean surveillance. The development of satellite-based AIS further expands the range of AIS and enables a wide converge of AIS data collection, which solves the problem of lacking AIS data in high-seas. At the same time, AIS data provides a rich source for data mining for maritime traffic analysis. In this paper, a typical clustering algorithm called K-means is applied to deal with the Space-based AIS(S-AIS) data received by “TianTuo-3” satellite developed by National University of Defense Technology. We use Elbow Rule to determine the optimal number of clusters and calculate the normalized standard deviation of COG(Course Over Ground) and SOG(Speed Over Ground) of vessels in south Africa area as their features to conduct clustering. This method is supposed to evaluate vessels' sailing stability and used in detection of low-likelihood behaviors or anomalies of vessels.
机译:自动识别系统(AIS)可为全球海洋中的移动船舶提供丰富的近实时信息,并已广泛用于避免船舶防撞,海事态势感知(MSA)和海洋监视等领域。基于卫星的AIS的发展进一步扩大了AIS的范围,并实现了AIS数据收集的广泛融合,从而解决了公海缺少AIS数据的问题。同时,AIS数据为海上交通分析提供了丰富的数据挖掘来源。本文采用一种典型的聚类算法K-means来处理国防科学技术大学研制的“天陀3”卫星接收的空基AIS(S-AIS)数据。我们使用弯头法则来确定最佳的聚类数,并计算南非地区船只的COG(地面对地路线)和SOG(地面对地速度)的标准化标准差作为进行聚类的特征。该方法应用于评估船舶的航行稳定性,并用于检测低可能性行为或船舶异常情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号