首页> 外文会议>IEEE International Conference on Advanced Logistics and Transport >Acquisition of Automated Guided Vehicle Route Planning Policy Using Deep Reinforcement Learning
【24h】

Acquisition of Automated Guided Vehicle Route Planning Policy Using Deep Reinforcement Learning

机译:使用深度强化学习获取自动制导车辆路径规划策略

获取原文

摘要

Automated guided vehicle (AGV) systems have been widely used in warehouses to improve productivity and reduce costs. For almost every warehouse, order picking is the most costly activity. In an order picking activity, the picker's travel time is the dominant component. To eliminate the travel time, we have developed a picking system in which AGVs transport the entire shelves including the required items to the pickers instead of the pickers moving to the shelves, which improves the efficiency of the picking activities. To minimize the shelf waiting time for the pickers, an intelligent AGV control method such as route planning is required. While there are already some existing approaches using reinforcement learning for this, reinforcement learning often requires hand-engineered low-dimensional state representation, which results in the loss of some state information. In this paper, we present an AGV route planning method for an AGV picking system using deep reinforcement learning. This method uses raw high-dimensional map information as input instead of hand-engineered low-dimensional state representation and it enables the acquisition of a successful AGV route planning policy. We evaluated the validity of the proposed method using an AGV picking system simulator and found that the proposed method outperforms other route planning strategies including our previous method.
机译:自动导引车(AGV)系统已在仓库中广泛使用,以提高生产率并降低成本。对于几乎每个仓库而言,拣货都是最昂贵的活动。在订单拣配活动中,拣配者的旅行时间是主要组成部分。为了消除旅行时间,我们开发了一种拣货系统,其中AGV将包括所需物品在内的整个货架运输到拣货员,而不是将拣货员搬到货架,这提高了拣货活动的效率。为了使拣选人员的货架等待时间最小化,需要一种智能的AGV控制方法,例如路线规划。尽管已经有一些使用强化学习的现有方法,但是强化学习通常需要手工设计的低维状态表示,这会导致某些状态信息的丢失。在本文中,我们提出了一种使用深度强化学习的AGV拣选系统的AGV路线规划方法。该方法使用原始的高维地图信息作为输入,而不是手工设计的低维状态表示,并且该方法可以获取成功的AGV路线规划策略。我们使用AGV拣选系统模拟器评估了该方法的有效性,发现该方法优于其他路线规划策略,包括我们先前的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号