首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP 2009 >Inferring functional cortical networks from spike train ensembles using Dynamic Bayesian Networks
【24h】

Inferring functional cortical networks from spike train ensembles using Dynamic Bayesian Networks

机译:使用动态贝叶斯网络从穗序列整体推断功能性皮质网络

获取原文

摘要

A fundamental goal in systems neuroscience is to infer the functional connectivity among neuronal elements coordinating information processing in the brain. In this work, we investigate the applicability of dynamic Bayesian networks (DBN) in inferring the structure of cortical networks from the observed spike trains. DBNs have unique features that make them capable of detecting causal relationships between spike trains such as modeling time-dependent relationships, detecting non-linear interactions and inferring connectivity between neurons from the observed ensemble activity. A probabilistic point process model was used to assess the performance under systematic variations of the model parameters. Results demonstrate the utility of DBN in inferring functional connectivity in cortical network models.
机译:系统神经科学的基本目标是推断协调大脑中信息处理的神经元之间的功能连接。在这项工作中,我们调查了动态贝叶斯网络(DBN)在从观测到的峰值序列推断皮质网络结构中的适用性。 DBN具有独特的功能,使它们能够检测峰值序列之间的因果关系,例如对时间相关的关系建模,检测非线性交互作用并从观察到的整体活动中推断神经元之间的连接性。概率点过程模型用于评估模型参数系统变化下的性能。结果证明了DBN在推断皮质网络模型中的功能连接性方面的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号