首页> 外文期刊>Machine Learning >Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure
【24h】

Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure

机译:具有贝叶斯正则化的非均匀动态贝叶斯网络,用于推断具有逐渐时变结构的基因调控网络

获取原文
获取原文并翻译 | 示例

摘要

The proper functioning of any living cell relies on complex networks of gene regulation. These regulatory interactions are not static but respond to changes in the environment and evolve during the life cycle of an organism. A challenging objective in computational systems biology is to infer these time-varying gene regulatory networks from typically short time series of transcriptional profiles. While homogeneous models, like conventional dynamic Bayesian networks, lack the flexibility to succeed in this task, fully flexible models suffer from inflated inference uncertainty due to the limited amount of available data. In the present paper we explore a semi-flexible model based on a piecewise homogeneous dynamic Bayesian network regularized by gene-specific inter-segment information sharing. We explore different choices of prior distribution and information coupling and evaluate their performance on synthetic data. We apply our method to gene expression time series obtained during the life cycle of Drosophila melanogaster, and compare the predicted segmentation with other state-of-the-art techniques. We conclude our evaluation with an application to synthetic biology, where the objective is to predict an in vivo regulatory network of five genes in Saccharomyces cerevisiae subjected to a changing environment.
机译:任何活细胞的正常功能都依赖于复杂的基因调控网络。这些调节相互作用不是静态的,而是对环境的变化作出反应并在生物的生命周期中进化。计算系统生物学中一个具有挑战性的目标是从典型的短时间序列的转录谱中推断出这些时变的基因调控网络。尽管同类模型(如常规动态贝叶斯网络)缺乏成功完成此任务的灵活性,但由于可用数据量有限,完全灵活的模型饱受推理不确定性膨胀的困扰。在本文中,我们探索了一种基于分段均质动态贝叶斯网络的半柔性模型,该网络通过基因特定的段间信息共享而规范化。我们探索了先验分布和信息耦合的不同选择,并评估了它们在综合数据上的性能。我们将我们的方法应用于在果蝇的生命周期中获得的基因表达时间序列,并将预测的切分与其他最新技术进行比较。我们通过在合成生物学中的应用来结束我们的评估,其目的是预测环境不断变化的酿酒酵母中五个基因的体内调控网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号