首页> 外文期刊>Neural computation >Spiking Neural Networks for Cortical Neuronal Spike Train Decoding
【24h】

Spiking Neural Networks for Cortical Neuronal Spike Train Decoding

机译:穗状神经网络的皮层神经元穗火车解码。

获取原文
获取原文并翻译 | 示例

摘要

Recent investigation of cortical coding and computation indicates that temporal coding is probably a more biologically plausible scheme used by neurons than the rate coding used commonly in most published work. We propose and demonstrate in this letter that spiking neural networks (SNN), consisting of spiking neurons that propagate information by the timing of spikes, are a better alternative to the coding scheme based on spike frequency (histogram) alone. The SNN model analyzes cortical neural spike trains directly without losing temporal information for generating more reliable motor command for cortically controlled prosthetics. In this letter, we compared the temporal pattern classification result from the SNN approach with results generated from firing-rate-based approaches: conventional artificial neural networks, support vector machines, and linear regression. The results show that the SNN algorithm can achieve higher classification accuracy and identify the spiking activity related to movement control earlier than the other methods. Both are desirable characteristics for fast neural information processing and reliable control command pattern recognition for neuroprosthetic applications.
机译:皮质编码和计算的最新研究表明,与大多数已发表的论文中通常使用的速率编码相比,时间编码可能是神经元在生物学上更合理的方案。我们在这封信中提出并证明,由尖峰神经元组成的尖峰神经网络(SNN)是通过尖峰的定时传播信息的,是仅基于尖峰频率(直方图)的编码方案的更好替代方案。 SNN模型直接分析皮质神经刺突,而不会丢失时间信息,从而为皮质控制的假肢生成更可靠的运动命令。在这封信中,我们将SNN方法的时间模式分类结果与基于点火速率的方法(传统的人工神经网络,支持向量机和线性回归)生成的结果进行了比较。结果表明,与其他方法相比,SNN算法可以实现更高的分类精度,并能更快地识别与运动控制相关的尖峰活动。两者都是快速神经信息处理和神经修复应用可靠控制命令模式识别的理想特性。

著录项

  • 来源
    《Neural computation》 |2010年第4期|p.1060-1085|共26页
  • 作者单位

    Key Laboratory for Image Processing and Intelligent Control of Education Ministry of China, Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China;

    Key Laboratory for Image Processing and Intelligent Control of Education Ministry of China, Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;

    Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China Harrington Department of Bioengineering and the Center for Neural Interface Design, Arizona State University, Tempe, AZ 85287, U.S.A.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号