【24h】

Distributed bearing estimation via matrix completion

机译:通过矩阵完成的分布式方位估计

获取原文

摘要

We consider bearing estimation of multiple narrow-band plane waves impinging on an array of sensors. For this problem, bearing estimation algorithms such as minimum variance distortionless response (MVDR), multiple signal classification, and maximum likelihood generally require the array covariance matrix as sufficient statistics. Interestingly, the rank of the array covariance matrix is approximately equal to the number of the sources, which is typically much smaller than the number of sensors in many practical scenarios. In these scenarios, the covariance matrix is low-rank and can be estimated via matrix completion from only a small subset of its entries. We propose a distributed matrix completion framework to drastically reduce the inter-sensor communication in a network while still achieving near-optimal bearing estimation accuracy. Using recent results in noisy matrix completion, we provide sampling bounds and show how the additive noise at the sensor observations affects the reconstruction performance. We demonstrate via simulations that our approach sports desirable tradeoffs between communication costs and bearing estimation accuracy.
机译:我们考虑撞击在传感器阵列上的多个窄带平面波的方位估计。对于此问题,诸如最小方差无失真响应(MVDR),多信号分类和最大似然之类的方位估计算法通常需要数组协方差矩阵作为足够的统计量。有趣的是,阵列协方差矩阵的秩大约等于源的数量,在许多实际情况下,其数量通常远小于传感器的数量。在这些情况下,协方差矩阵是低秩的,可以仅通过其项的一小部分通过矩阵完成来估计。我们提出了一种分布式矩阵完成框架,以大幅度减少网络中的传感器间通信,同时仍能实现接近最佳的方位估计精度。使用最近在嘈杂的矩阵中完成的结果,我们提供了采样范围,并显示了传感器观测值处的附加噪声如何影响重建性能。我们通过仿真证明,我们的方法在通信成本和方位估计精度之间进行了折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号