首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >Sample-separation-margin based minimum classification error training of pattern classifiers with quadratic discriminant functions
【24h】

Sample-separation-margin based minimum classification error training of pattern classifiers with quadratic discriminant functions

机译:具有二次判别函数的模式分类器基于样本分离余量的最小分类误差训练

获取原文

摘要

In this paper, we present a new approach to minimum classification error (MCE) training of pattern classifiers with quadratic discriminant functions. First, a so-called sample separation margin (SSM) is defined for each training sample and then used to define the misclassification measure in MCE formulation. The computation of SSM can be cast as a nonlinear constrained optimization problem and solved efficiently. Experimental results on a large-scale isolated online handwritten Chinese character recognition task demonstrate that SSM-based MCE training not only decreases the empirical classification error, but also pushes the training samples away from the decision boundaries, therefore a good generalization is achieved. Compared with conventional MCE training, an additional 7% to 18% relative error rate reduction is observed in our experiments.
机译:在本文中,我们提出了一种具有二次判别函数的模式分类器最小分类误差(MCE)训练的新方法。首先,为每个训练样本定义一个所谓的样本分离裕度(SSM),然后将其用于定义MCE公式中的误分类度量。 SSM的计算可以看作是非线性约束优化问题,可以有效地求解。在大规模隔离在线手写汉字识别任务上的实验结果表明,基于SSM的MCE训练不仅减少了经验分类错误,而且使训练样本脱离了决策边界,因此获得了很好的概括性。与传统的MCE训练相比,在我们的实验中观察到了另外7%至18%的相对错误率降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号