首页> 外文会议>IEEE International Conference on Acoustics Speech and Signal;ICASSP 2010 >Multiplicative update rules for nonnegative matrix factorization with co-occurrence constraints
【24h】

Multiplicative update rules for nonnegative matrix factorization with co-occurrence constraints

机译:具有共现约束的非负矩阵分解的乘法更新规则

获取原文

摘要

Nonnegative matrix factorization (NMF) is a widely-used tool for obtaining low-rank approximations of nonnegative data such as digital images, audio signals, textual data, financial data, and more. One disadvantage of the basic NMF formulation is its inability to control the amount of dependence among the learned dictionary atoms. Enforcing dependence within predetermined groups of atoms allows objects to be represented using multiple atoms instead of only one atom. In this paper, we introduce three simple and convenient multiplicative update rules for NMF that enforce dependence among atoms. Using examples in music transcription, we demonstrate the ability of these updates to represent each musical note with multiple atoms and cluster the atoms for source separation purposes.
机译:非负矩阵分解(NMF)是一种广泛使用的工具,用于获得非负数据的低秩近似,例如数字图像,音频信号,文本数据,财务数据等。基本NMF公式的一个缺点是它无法控制所学习字典原子之间的依赖性量。在预定的原子组内强制执行依赖关系可以使用多个原子而不是仅一个原子来表示对象。在本文中,我们为NMF引入了三个简单便捷的乘法更新规则,它们强制了原子之间的依赖性。通过使用音乐转录中的示例,我们演示了这些更新能够用多个原子表示每个音符并为源分离目的将原子聚类的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号