首页> 外文期刊>IEEE Transactions on Signal Processing >A Unified Convergence Analysis of the Multiplicative Update Algorithm for Regularized Nonnegative Matrix Factorization
【24h】

A Unified Convergence Analysis of the Multiplicative Update Algorithm for Regularized Nonnegative Matrix Factorization

机译:正则化非负矩阵分解的乘积更新算法的统一收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

The multiplicative update (MU) algorithm has been extensively used to estimate the basis and coefficient matrices in nonnegative matrix factorization (NMF) problems under a wide range of divergences and regularizers. However, theoretical convergence guarantees have only been derived for a few special divergences without regularization. In this work, we provide a conceptually simple, self-contained, and unified proof for the convergence of the MU algorithm applied on NMF with a wide range of divergences and regularizers. Our main result shows the sequence of iterates (i.e., pairs of basis and coefficient matrices) produced by the MU algorithm converges to the set of stationary points of the nonconvex NMF optimization problem. Our proof strategy has the potential to open up new avenues for analyzing similar problems in machine learning and signal processing.
机译:乘法更新(MU)算法已广泛用于估计在大范围散度和正则化条件下的非负矩阵分解(NMF)问题中的基数和系数矩阵。但是,理论收敛保证仅是针对一些特殊的差异而没有进行正则化而得出的。在这项工作中,我们为应用于NMF的MU算法具有广泛的发散和正则化的收敛性,提供了概念上简单,自包含且统一的证明。我们的主要结果表明,由MU算法产生的迭代序列(即成对的基数和系数矩阵)收敛于非凸NMF优化问题的固定点集。我们的证明策略有可能为分析机器学习和信号处理中的类似问题开辟新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号