首页> 外文会议>IEEE International Conference on Acoustics, Speech and Signal Processing;ICASSP >GOASVM: Protein subcellular localization prediction based on Gene ontology annotation and SVM
【24h】

GOASVM: Protein subcellular localization prediction based on Gene ontology annotation and SVM

机译:GOASVM:基于基因本体注释和SVM的蛋白质亚细胞定位预测

获取原文

摘要

Protein subcellular localization is an essential step to annotate proteins and to design drugs. This paper proposes a functional-domain based method—GOASVM—by making full use of Gene Ontology Annotation (GOA) database to predict the subcellular locations of proteins. GOASVM uses the accession number (AC) of a query protein and the accession numbers (ACs) of homologous proteins returned from PSI-BLAST as the query strings to search against the GOA database. The occurrences of a set of predefined GO terms are used to construct the GO vectors for classification by support vector machines (SVMs). The paper investigated two different approaches to constructing the GO vectors. Experimental results suggest that using the ACs of homologous proteins as the query strings can achieve an accuracy of 94.68%, which is significantly higher than all published results based on the same dataset. As a user-friendly web-server, GOASVM is freely accessible to the public at http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html.
机译:蛋白质亚细胞定位是注释蛋白质和设计药物的重要步骤。本文通过充分利用基因本体注释(GOA)数据库来预测蛋白质的亚细胞位置,提出了一种基于功能域的方法GOASVM。 GOASVM使用查询蛋白的登录号(AC)和从PSI-BLAST返回的同源蛋白的登录号(AC)作为查询字符串,以对GOA数据库进行搜索。一组预定义的GO项的出现用于构建GO向量,以通过支持向量机(SVM)进行分类。本文研究了两种构建GO向量的方法。实验结果表明,使用同源蛋白的AC作为查询字符串可以达到94.68%的准确性,这明显高于基于同一数据集的所有已发布结果。作为用户友好的Web服务器,GOASVM可以从http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html免费访问。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号