首页> 外文会议>IEEE EMBS International Conference on Biomedical Health Informatics >Automatic Subtask Segmentation Approach of the Timed Up and Go Test for Mobility Assessment System Using Wearable Sensors
【24h】

Automatic Subtask Segmentation Approach of the Timed Up and Go Test for Mobility Assessment System Using Wearable Sensors

机译:使用可穿戴传感器的机动性评估系统的定时测试的自动子任务分割方法

获取原文

摘要

Population aging is common phenomenon in the worldwide today. Maintaining and promoting the healthy mobility and mentality is crucial to enhance quality of life. The accuracy of mobility assessment in elderly people is an important issue of clinical practice. Many clinical tools are proposed for mobility assessment. The Timed Up and Go (TUG) test is one of the most widely accepted functional mobility test to measure basic mobility and balance capabilities. The TUG test consists of eight subtasks, including initial sitting, sit-to-stand, walking-out, turning, walking-in, turning around, stand-to-sit and end sitting. The detail information about subtask is essential to aid clinical professional and physiotherapist about making assessment decision. The main objective of this study is to develop an automatic subtask segmentation approach during TUG test execution. Activity-defined window technique and decision rules are designed and employed in the proposed subtask segmentation approach. To ensure feasibility of proposed segmentation approach, the experiment recruits ten volunteers, including five healthy people and five patients with severe knee osteoarthritis. Each volunteer performs three times 10m and 5m TUG and collects the motion data with wearable sensors. There are 60 instances, including 30 instances of 5m TUG and 10m TUG test, which are used to explore the performance of the proposed segmentation approach. The overall performances of the accuracy in the TUG test for healthy volunteers and patients with severe knee osteoarthritis are 95.47% and 95.28%, respectively. The results show that the proposed segmentation approach can fulfill the reliability of automatic subtasks segmentation during the TUG test.
机译:人口老龄化是当今世界范围内的普遍现象。维持和促进健康的流动性和心态对提高生活质量至关重要。老年人移动性评估的准确性是临床实践中的重要问题。提出了许多用于流动性评估的临床工具。定时上车(TUG)测试是用于衡量基本移动性和平衡能力的最广泛接受的功能移动性测试之一。 TUG测试包含八个子任务,包括初始坐着,坐着站着,走出,转身,走进去,转身,站着坐和结束坐着。有关子任务的详细信息对于帮助临床专业人员和理疗师做出评估决定至关重要。这项研究的主要目的是在执行TUG测试期间开发一种自动子任务分割方法。在定义的子任务分割方法中设计并采用了活动定义的窗口技术和决策规则。为了确保建议的分割方法的可行性,该实验招募了10名志愿者,其中包括5名健康人和5名重度膝骨关节炎患者。每个志愿者执行10m和5m TUG的3次,并使用可穿戴式传感器收集运动数据。有60个实例,包括30个5m TUG和10m TUG测试实例,用于探索所提出的分割方法的性能。在健康志愿者和重度膝骨关节炎患者中,TUG测试准确性的总体表现分别为95.47%和95.28%。结果表明,本文提出的分割方法能够满足TUG测试过程中自动子任务分割的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号