首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Data-Driven Analysis Methods for Controllability and Observability of A Class of Discrete LTI Systems with Delays
【24h】

Data-Driven Analysis Methods for Controllability and Observability of A Class of Discrete LTI Systems with Delays

机译:一类具有时滞的离散LTI系统的可控性和可观测性的数据驱动分析方法

获取原文

摘要

We propose a couple of data-driven analysis methods for the state controllability and state observability of a class of discrete linear time-invariant (LTI) systems with delays, which have unknown parameter matrices. To analyze the state controlla-bility and the state observability, these data-driven methods first transform the system model into an augmented state-space model, and then use the state/output data that were previously measured, to directly build the controllability/observability matrices of this augmented model. Our methods have two main advantages over the traditional model-based characteristics analysis approaches. First, the unknown parameter matrices are not necessary to be identified for verifying the state controllability/observability of the system, but these characteristics can be directly verified according to the measured data, thus our methods have less workload. Second, their computational complexity is lower for the construction of the state controllability/observability matrices.
机译:针对一类具有未知参数矩阵的时滞离散线性时不变(LTI)系统的状态可控性和状态可观性,我们提出了两种数据驱动的分析方法。为了分析状态可控性和状态可观察性,这些数据驱动方法首先将系统模型转换为增强状态空间模型,然后使用先前测量的状态/输出数据直接构建可控制性/可观察性此增强模型的矩阵。与传统的基于模型的特征分析方法相比,我们的方法具有两个主要优势。首先,未知参数矩阵不必用于验证系统的状态可控性/可观察性,但可以根据实测数据直接验证这些特性,因此我们的方法工作量较小。其次,对于状态可控性/可观察性矩阵的构造,它们的计算复杂度较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号