首页> 外文会议>IEEE Data Driven Control and Learning Systems Conference >Iterative Learning Consensus for Discrete-time Multi-Agent Systems with Measurement Saturation and Random Noises
【24h】

Iterative Learning Consensus for Discrete-time Multi-Agent Systems with Measurement Saturation and Random Noises

机译:具有测量饱和度和随机噪声的离散多智能体系统的迭代学习共识

获取原文

摘要

This paper investigates the consensus tracking problem for a class of multi-agent systems with measurement saturation and random noises. A distributed iterative learning control algorithm is proposed by utilizing the input signals and the measured output information from previous iterations. The considered multi-agent systems have a fixed topology of the communication graph and the desired trajectory is only accessible to a subset of agents. With the help of a decreasing gain sequence, it is proved that the input sequence will converge to the desired one in an almost sure sense as the iteration number goes to infinity. Simulation results are given to verify the effectiveness of the proposed algorithm.
机译:本文研究了一类具有测量饱和度和随机噪声的多智能体系统的共识跟踪问题。通过利用输入信号和先前迭代的测量输出信息,提出了一种分布式迭代学习控制算法。所考虑的多主体系统具有通信图的固定拓扑,并且期望的轨迹仅对主体的子集可访问。借助于递减的增益序列,证明了当迭代次数达到无穷大时,输入序列将在几乎确定的意义上收敛到所需序列。仿真结果证明了所提算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号