首页> 外文会议>IEEE Conference on Control Technology and Applications >Estimation and Targeting of Residential Households for Hour-Ahead Demand Response Interventions – A Case Study in California
【24h】

Estimation and Targeting of Residential Households for Hour-Ahead Demand Response Interventions – A Case Study in California

机译:提前小时需求响应干预措施的居民家庭的估算和目标定位-以加利福尼亚为例

获取原文

摘要

We evaluate the causal effect of hour-ahead price interventions on the reduction of residential electricity consumption, using a large-scale experiment on 7,000 households in California. In addition to this experimental approach, we also develop a non-experimental framework that allows for an estimation of the desired treatment effect on an individual level by estimating user-level counterfactuals using time-series prediction. This approach crucially eliminates the need for a randomized experiment. Both approaches estimate a reduction of ≈0.10 kWh (11%) per Demand Response event and household. We also analyze an adaptive targeting scheme, which assigns customized interventions to users based on their histories to increase the reduction-per-payout ratio by 107%.
机译:我们使用加利福尼亚州7,000个家庭的大规模实验,评估了小时前价格干预措施对减少居民用电的因果关系。除此实验方法外,我们还开发了一种非实验框架,该框架可通过使用时间序列预测来估计用户级别的反事实,从而在单个级别上估计所需的治疗效果。这种方法至关重要地消除了对随机实验的需要。两种方法均估计每个需求响应事件和每个家庭减少约0.10 kWh(11%)。我们还分析了自适应定位方案,该方案根据用户的历史记录为用户分配了定制的干预措施,以将每次付款的减少率提高107%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号