首页> 外文会议>IEEE Conference on Control Technology and Applications >Interacting Multiple Model Kalman Filter Based Vehicle Lateral Motion Estimation Under Various Road Surface Conditions
【24h】

Interacting Multiple Model Kalman Filter Based Vehicle Lateral Motion Estimation Under Various Road Surface Conditions

机译:多种路面条件下基于交互多模型卡尔曼滤波的车辆横向运动估计

获取原文

摘要

In this paper, we present an estimation method of vehicle lateral motion using interacting multiple model (IMM) Kalman filter (KF) to consider various road surface conditions for the vehicle driving on asphalt, wet, or snow road. In a vehicle lateral dynamic model, the exact values of cornering stiffness are unknown so that typical nominal values are used for obtaining the control law for the active safety systems. To cope with this problem, in this paper we propose the IMM which consists of two vehicle dynamic lateral motion models: One model has a nominal dry road parameter, and the other one does parameters regarding the snow road. From IMM KF, we can obtain the stochastically best-blended state of the vehicle over various road surface conditions. From the simulation results on real measured camera sensor data, we observed that the vehicle lateral motion estimation using IMM KF outperforms the estimation using KF of each model. Furthermore, we validated the effectiveness of the proposed method using the virtual lane with the output of IMM KF estimates under various road surface conditions.
机译:在本文中,我们提出了一种基于交互多模型(IMM)卡尔曼滤波器(KF)的车辆横向运动的估算方法,以考虑在沥青路面,潮湿路面或积雪路面上行驶的车辆的各种路面状况。在车辆横向动态模型中,转弯刚度的确切值是未知的,因此典型的标称值用于获得主动安全系统的控制律。为了解决这个问题,本文提出了IMM,IMM由两个车辆动态横向运动模型组成:一个模型具有标称干路参数,另一个模型具有关于雪道的参数。通过IMM KF,我们可以在各种路面条件下获得车辆的随机最佳混合状态。从实际测量的相机传感器数据的仿真结果中,我们观察到使用IMM KF进行的车辆横向运动估计优于使用每个模型的KF进行的估计。此外,我们在各种路面条件下使用IMM KF估计值输出的虚拟车道验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号