首页> 外文会议>IEEE conference on control applications >Optimal, Active Control of Oxides of Nitrogen (NO_x) Emissions From a Natural Gas-Fired Burner Using a Simple Genetic Algorithm
【24h】

Optimal, Active Control of Oxides of Nitrogen (NO_x) Emissions From a Natural Gas-Fired Burner Using a Simple Genetic Algorithm

机译:基于简单遗传算法的天然气燃烧器氮(NO_x)排放氧化物的最优主动控制

获取原文

摘要

This paper describes the successful application of a genetic algorithm to the problem of active performance optimization of a non-linear, turbulent combustion process. Performance is measured in terms of combustion efficiency, η_c, and the concentration of NO and NO_2 ([NO_x]) emissions from a natural gas-fired research burner. Performance is affected by varying the mixing process through actuation of the excess air (EA) level and the swirl intensity (S') at the burner exit. The control scheme is a simple feedback loop, where the genetic algorithm functions as a specialized search operator, continuously monitoring [NO_x] and η_c and updating EA and S' settings. The approach is shown to be effective in achieving and maintaining relatively high burner performance for a given burner geometry. The efficacy of the genetic algorithm is compared to a simpler search technique known as Powell's direction-set method. Although practical application of this technique will benefit from further development, the results point out some of the advantages of the genetic algorithm in this application.
机译:本文介绍了遗传算法在非线性湍流燃烧过程主动性能优化问题上的成功应用。根据燃烧效率η_c以及天然气研究用燃烧器排放的NO和NO_2([NO_x])的浓度来衡量性能。通过驱动燃烧器出口处的过量空气(EA)和涡旋强度(S')来改变混合过程,从而影响性能。控制方案是一个简单的反馈回路,其中遗传算法充当专门的搜索运算符,连续监视[NO_x]和η_c并更新EA和S'设置。对于给定的燃烧器几何形状,该方法被证明在实现和维持相对较高的燃烧器性能方面是有效的。将遗传算法的功效与称为Powell方向设定法的更简单搜索技术进行了比较。尽管该技术的实际应用将受益于进一步的发展,但结果指出了遗传算法在该应用中的一些优势。

著录项

  • 来源
  • 会议地点 Albany NY(US)
  • 作者单位

    Research and Development Engineer UCI Combustion Laboratory University of California Irvine CA 92717;

    Director UCI Combustion Laboratory University of California Irvine CA 92717;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号