首页> 外文会议>IEEE Conference on Computer Communications >A Collaborative Learning Based Approach for Parameter Configuration of Cellular Networks
【24h】

A Collaborative Learning Based Approach for Parameter Configuration of Cellular Networks

机译:基于协作学习的蜂窝网络参数配置方法

获取原文

摘要

Cellular network performance depends heavily on the configuration of its network parameters. Current practice of parameter configuration relies largely on expert experience, which is often suboptimal, time-consuming, and error-prone. Therefore, it is desirable to automate this process to improve the accuracy and efficiency via learning-based approaches. However, such approaches need to address several challenges in real operational networks: the lack of diverse historical data, a limited amount of experiment budget set by network operators, and highly complex and unknown network performance functions. To address those challenges, we propose a collaborative learning approach to leverage data from different cells to boost the learning efficiency and to improve network performance. Specifically, we formulate the problem as a transferable contextual bandit problem, and prove that by transfer learning, one could significantly reduce the regret bound. Based on the theoretical result, we further develop a practical algorithm that decomposes a cell's policy into a common homogeneous policy learned using all cells' data and a cell-specific policy that captures each individual cell's heterogeneous behavior. We evaluate our proposed algorithm via a simulator constructed using real network data and demonstrates faster convergence compared to baselines. More importantly, a live field test is also conducted on a real metropolitan cellular network consisting 1700+ cells to optimize five parameters for two weeks. Our proposed algorithm shows a significant performance improvement of 20%.
机译:蜂窝网络的性能在很大程度上取决于其网络参数的配置。当前参数配置的实践主要依赖于专家经验,这通常不是最佳的,耗时的并且容易出错。因此,期望通过基于学习的方法使该过程自动化以提高准确性和效率。但是,这样的方法需要解决实际运营网络中的几个挑战:缺乏多样化的历史数据,网络运营商设置的实验预算有限以及高度复杂和未知的网络性能功能。为了解决这些挑战,我们提出了一种协作学习方法,以利用来自不同单元的数据来提高学习效率并改善网络性能。具体来说,我们将该问题公式化为可转移的上下文强盗问题,并证明通过转移学习,可以显着减少后悔界限。基于理论结果,我们进一步开发了一种实用的算法,该算法将单元格的策略分解为使用所有单元格数据学习的通用同质策略,以及捕获每个单个单元格异质行为的特定于单元格的策略。我们通过使用真实网络数据构建的模拟器评估了我们提出的算法,并证明了与基线相比,收敛速度更快。更重要的是,还对包含1700+个小区的真实大城市蜂窝网络进行了现场测试,以在两个星期内优化五个参数。我们提出的算法显示出20%的显着性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号