首页> 外文期刊>Internet of Things Journal, IEEE >Learning-Based Joint Configuration for Cellular Networks
【24h】

Learning-Based Joint Configuration for Cellular Networks

机译:蜂窝网络的基于学习的联合配置

获取原文
获取原文并翻译 | 示例

摘要

Cellular network configuration is critical for network performance. Current practice is mostly based on field experience and manual adjustment. The process is labor-intensive, error-prone, and far from optimal. To automate and optimize cellular network configuration, in this paper, we propose an online-learning-based joint-optimization approach that addresses a few specific challenges: limited data availability, convoluted sample data, highly complex optimization due to interactions among neighboring cells, and the need to adapt to network dynamics. In our approach, to learn an appropriate utility function for a cell, we develop a neural-network-based model that addresses the convoluted sample data issue and achieves good accuracy based on data aggregation. Based on the utility function learned, we formulate a global network configuration optimization problem. To solve this high-dimensional nonconcave maximization problem, we design a Gibbs-sampling-based algorithm that converges to an optimal solution when a technical parameter is small enough. Furthermore, we design an online scheme that updates the learned utility function and solves the corresponding maximization problem efficiently to adapt to network dynamics. To illustrate the idea, we use the case study of pilot power configuration. Numerical results illustrate the effectiveness of the proposed approach.
机译:蜂窝网络配置对于网络性能至关重要。当前的实践主要基于现场经验和手动调整。该过程是劳动密集型的,容易出错,并且远非最佳。为了自动化和优化蜂窝网络配置,在本文中,我们提出了一种基于在线学习的联合优化方法,该方法解决了一些特定的挑战:有限的数据可用性,复杂的样本数据,由于相邻小区之间的相互作用而导致的高度复杂的优化以及适应网络动态的需求。在我们的方法中,为了学习适当的细胞效用函数,我们开发了基于神经网络的模型,该模型解决了复杂的样本数据问题,并基于数据聚合获得了良好的准确性。基于学到的效用函数,我们制定了一个全局网络配置优化问题。为了解决此高维非凹最大化问题,我们设计了一种基于Gibbs采样的算法,当技术参数足够小时,该算法收敛到最优解。此外,我们设计了一种在线方案,该方案可更新学习的效用函数并有效解决相应的最大化问题,以适应网络动态。为了说明这一点,我们使用了先导功率配置的案例研究。数值结果说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号