首页> 外文会议>IEEE Conference on Computer Communications >An Integrated Top-down and Bottom-up Task Allocation Approach in Social Sensing based Edge Computing Systems
【24h】

An Integrated Top-down and Bottom-up Task Allocation Approach in Social Sensing based Edge Computing Systems

机译:基于社会感知的边缘计算系统中的自上而下和自下而上的集成任务分配方法

获取原文

摘要

With the advance of mobile computing, Internet of Things, and 5G networks, social sensing based edge computing (SSEC) systems have emerged as a new computation paradigm where people and their personally owned devices collect and process sensing measurements about the physical world at the edge of networks. In this paper, we focus on the task allocation problem in SSEC where rational edge devices are motivated by incentives to collectively accomplish the computation tasks in the system. Several unique challenges exist to solve this problem: (i) the edge devices often do not share the complete context information (e.g., CPU, memory usage) in the task allocation process due to privacy concerns; (ii) the edge devices are rational actors who may have competing objectives with the application; (iii) the application server and edge devices are usually owned by different entities, making the coordination in task allocation more challenging. This paper develops a novel integrated Top-Down and Bottom-Up (TDBU) task allocation framework to address these challenges. In particular, TDBU incorporates abottom-up game-theoretic model that allows the edge devices to specify their task preferences in a way that maximizes their payoffs. It also incorporates atop-down control model that ensures the performance of the applications using control theory. The TDBU was implemented on a real-world edge computing testbed that consists of heterogeneous devices (Jetson TX1, TK1 boards, Raspberry Pi3). We compared the performance of TDBU with state-of-the-art baselines through a real-world social sensing application. The results showed that our solution significantly outperformed the baselines in various application settings.
机译:随着移动计算,物联网和5G网络的发展,基于社会感知的边缘计算(SSEC)系统已成为一种新的计算范式,人们及其个人设备可以收集和处理有关边缘物理世界的感知测量结果网络。在本文中,我们关注于SSEC中的任务分配问题,在该问题中,合理的边缘设备受到激励的激励,以共同完成系统中的计算任务。解决此问题存在几个独特的挑战:(i)由于隐私问题,边缘设备在任务分配过程中通常不共享完整的上下文信息(例如,CPU,内存使用情况); (ii)边缘设备是理性参与者,他们可能与应用程序有相互竞争的目标; (iii)应用服务器和边缘设备通常由不同的实体拥有,这使得任务分配中的协调更具挑战性。本文开发了一种新颖的集成式自上而下和自底向上(TDBU)任务分配框架来应对这些挑战。尤其是,TDBU结合了自下而上的博弈论模型,该模型允许边缘设备以最大化其收益的方式指定其任务偏好。它还结合了自上而下的控制模型,该模型使用控制理论来确保应用程序的性能。 TDBU是在包含异类设备(Jetson TX1,TK1板,Raspberry Pi3)的真实边缘计算测试平台上实现的。我们通过现实世界中的社交感知应用程序将TDBU的性能与最先进的基准进行了比较。结果表明,我们的解决方案在各种应用程序设置中均明显优于基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号