首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >Online adaptive learning for multi-camera people counting
【24h】

Online adaptive learning for multi-camera people counting

机译:在线自适应学习,适用于多摄像机人数统计

获取原文

摘要

People counting has attracted much attention in video surveillance. This paper proposes an online adaptive learning people counting system across multiple cameras with partial overlapping Fields Of Views (FOVs). The main novelty of this system is that: 1) we propose an online adaptive learning scheme to detect and count people in order to make the system adaptive to various scenes. The system can online update the Gaussian Mixture Model (GMM) based classifier by collecting samples with high confidence automatically; 2) We present an approach to gather the number of people from multiple cameras. The system uses similarity measurement combined with homography transformation to find the corresponding people in overlapping FOVs and integrates the counting results of multiple cameras finally. Experimental results show that the proposed system can adapt to different scenes and count the pedestrians across multiple cameras accurately.
机译:在视频监控中,人数计数吸引了很多关注。本文提出了一种在线自适应学习人数统计系统,该系统可以跨多个具有部分重叠视场(FOV)的摄像机。该系统的主要新颖之处在于:1)我们提出了一种在线自适应学习方案来检测和计数人,以使该系统适应各种场景。该系统可以通过自动收集高可信度的样本来在线更新基于高斯混合模型(GMM)的分类器; 2)我们提出了一种从多个摄像机收集人数的方法。该系统将相似度测量与单应变换相结合,在重叠视场中找到对应的人,最后对多台摄像机的计数结果进行积分。实验结果表明,所提出的系统能够适应不同的场景,并能准确地统计多个摄像机的行人数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号