首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >Feature analysis for automatic classification of HEp-2 florescence patterns : Computer-Aided Diagnosis of Auto-immune diseases
【24h】

Feature analysis for automatic classification of HEp-2 florescence patterns : Computer-Aided Diagnosis of Auto-immune diseases

机译:HEp-2荧光模式自动分类的特征分析:自身免疫性疾病的计算机辅助诊断

获取原文

摘要

Indirect ImmunoFluorescence (IIF) is currently the recommended method for the detection of antinuclear autoantibodies(ANA). It is an effective technique to reveal the presence of auto immune diseases; however, it is a subjective method and hence dependent on the experience and expertise of the physician. Moreover, inter-observer variability limits the reproducibility of IIF reading. To this end, we propose feature extraction methods for automatic recognition of staining patterns of HEp-2 images (provided as a part of the ICPR 2012 HEp-2 Cells Classification Contest) to develop a Computer-Aided Diagnosis system and support the specialists' decision. We compare the performances of various individual and combined features and show that a combination of HOG(Histogram of Oriented Gradients), Texture and ROI(Region of Interest) features are best suited for our task achieving an overall accuracy of 91.13% using a Support Vector Machine as classifier.
机译:目前推荐使用间接免疫荧光(IIF)检测抗核自身抗体(ANA)。这是揭示自身免疫疾病存在的有效技术。但是,这是一种主观方法,因此取决于医师的经验和专业知识。此外,观察者间的差异性限制了IIF读数的可重复性。为此,我们提出了特征提取方法,用于自动识别HEp-2图像的染色模式(作为ICPR 2012 HEp-2细胞分类大赛的一部分提供),以开发计算机辅助诊断系统并支持专家的决定。我们比较了各种单独功能和组合功能的性能,结果表明,HOG(定向梯度直方图),纹理和ROI(感兴趣区域)功能的组合最适合使用支持向量实现91.13%的整体精度的任务机器作为分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号