首页> 外文会议>IAPR Workshop on Pattern Recognition in Remote Sensing >FPGA Optimization for Hyperspectral Target Detection with Collaborative Representation
【24h】

FPGA Optimization for Hyperspectral Target Detection with Collaborative Representation

机译:具有协同表示的高光谱目标检测的FPGA优化

获取原文

摘要

Currently, remote sensing image processing raises much higher requirements on the computing platform and processing speed. The high speed, low power, reconfigurable and radiation resistance features of Field Programmable Gate Arrays (FPGA) makes it become a better choice for real-time processing in hyperspectral imagery. In this paper, we have optimized the newly proposed hyperspectral target detection algorithm based on FPGA. The collaborative representation is a high-efficiency target detection (CRD) algorithm in hyperspectral imagery, which is directly based on the concept that the target pixels can be approximately represented by its spectral signatures, while the other cannot. Using the Sherman-Morrison formula to calculate the matrix inversion and the difficulty of implementing the overall CRD algorithm on the FPGA is reduced. The running speed of parallel programming is greatly promoted on the FPGA under the premise of reasonable resources. The experimental results demonstrate that the proposed system has significantly improved the processing time when compared to the pre-optimized system and the 3.40 GHz CPU.
机译:当前,遥感图像处理对计算平台和处理速度提出了更高的要求。现场可编程门阵列(FPGA)的高速,低功耗,可重构和抗辐射特性使其成为高光谱图像实时处理的更好选择。在本文中,我们优化了新提出的基于FPGA的高光谱目标检测算法。协作表示是高光谱图像中的高效目标检测(CRD)算法,它直接基于以下概念:目标像素可以通过其光谱特征近似表示,而其他像素则不能。使用Sherman-Morrison公式计算矩阵求逆,从而降低了在FPGA上实现整体CRD算法的难度。在资源合理的前提下,FPGA上并行编程的运行速度大大提高。实验结果表明,与预优化系统和3.40 GHz CPU相比,该系统显着改善了处理时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号