首页> 外文会议>IAPR Asian Conference on Pattern Recognition >Privacy-Conscious Person Re-identification Using Low-Resolution Videos
【24h】

Privacy-Conscious Person Re-identification Using Low-Resolution Videos

机译:使用低分辨率视频的具有隐私意识的人重新识别

获取原文

摘要

This paper proposes a person re-identification method for obtaining human flow information from low-resolution video generated by surveillance cameras. A requisite for the use of cameras in public spaces is protection of the privacy of individuals appearing in the captured videos. Thus, low-resolution videos (e.g. head sizes are 3-8 pixels) are expected to solve the problem of privacy, which make faces unrecognizable. However, person re-identification is more difficult in low-resolution videos than in high-resolution videos. The reason is that the person-occupied region consists of fewer pixels and has less information. Our proposed method re-identifies a person using the color features extracted from broad regions, which we consider as the most basic and important features for low-resolution videos. The color feature extraction is based on vertical relationships such as a person's head and his/her clothing because those are kept in low-resolution videos. In addition, we select the common color features, which do not change significantly between cameras. In an evaluation experiment with low-resolution videos, the re-identification accuracy of the proposed method is 71%, which is equivalent to that of manual re-identification from low-resolution videos.
机译:提出了一种从监控摄像机产生的低分辨率视频中获取人流信息的人的重新识别方法。在公共场所使用摄像机的必要条件是保护出现在捕获的视频中的个人的隐私。因此,低分辨率视频(例如,头部大小为3-8像素)有望解决隐私问题,这使得面部无法识别。但是,与高分辨率视频相比,低分辨率视频中的人员重新识别更加困难。原因是人占据区域由较少的像素组成并且具有较少的信息。我们提出的方法使用从广泛区域提取的色彩特征来重新识别人,我们认为这是低分辨率视频的最基本和最重要的特征。颜色特征提取基于诸如人的头部和他/她的衣服之类的垂直关系,因为它们被保存在低分辨率视频中。此外,我们选择了常见的色彩功能,这些色彩功能在相机之间不会有太大变化。在低分辨率视频的评估实验中,该方法的重识别精度为71%,相当于从低分辨率视频中进行手动重识别的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号