首页> 外文会议>High Performance Computing Systems and Applications and the OSCAR Symposium >SCOJO - Share Based Job Coscheduling With Integrated Dynamic Resource Directory in Support or Grid Scheduling
【24h】

SCOJO - Share Based Job Coscheduling With Integrated Dynamic Resource Directory in Support or Grid Scheduling

机译:SCOJO-在支持或网格调度中使用基于集成的动态资源目录的基于共享的作业调度

获取原文
获取原文并翻译 | 示例

摘要

Grid environments currently use mere batch scheduling or assume jobs to be started immediately. We apply a combination of batch scheduling and time sharing and propose an approach -which assigns certain start times and certain shares based on integrated resource management. Employing loosely coordinated coscheduling, provides good chances for latency hiding and high flexibility in executing jobs across multiple sites. Our approach takes potential slowdowns or speedups from coscheduling into consideration. We support such scheduling by a dynamic directory service. Current directory services for grid computing provide static machine descriptions plus some dynamic information like CPU load as obtained via NWS. However, in other work, we have shown that the detailed application characteristics matter in coscheduling. Furthermore, predictability is currently limited to short-term extrapolations from the recent history. We develop scheduling plans and consider site workload and application characteristics, while not disclosing such information to other users or sites. This approach enables higher-quality decisions and longer-term predictability. We demonstrate our approach on the basis of simulations and simplified real coscheduling tests, run on an SMP server.
机译:网格环境当前仅使用批处理调度,或者假定作业将立即启动。我们将批处理计划和时间共享结合起来,提出了一种方法-根据集成的资源管理分配某些开始时间和某些份额。采用松散协调的协同调度,可以很好地隐藏延迟,并在跨多个站点执行作业时具有高度的灵活性。我们的方法考虑了协同调度的潜在速度降低或加速问题。我们通过动态目录服务支持这种调度。当前用于网格计算的目录服务提供了静态机器描述以及一些动态信息,例如通过NWS获得的CPU负载。但是,在其他工作中,我们已经表明详细的应用程序特性在协同调度中很重要。此外,目前的可预测性仅限于近期历史的短期推断。我们会制定计划计划,并考虑站点的工作量和应用程序特征,同时不会将此类信息透露给其他用户或站点。这种方法可以实现更高质量的决策和更长期的可预测性。我们基于在SMP服务器上运行的模拟和简化的实际调度测试来演示我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号