首页> 外文会议>High Performance Computing for Computational Science - VECPAR 2008 >High Performance Computing for Eigenvalue Solver in Density-Matrix Renormalization Group Method: Parallelization of the Hamiltonian Matrix-Vector Multiplication
【24h】

High Performance Computing for Eigenvalue Solver in Density-Matrix Renormalization Group Method: Parallelization of the Hamiltonian Matrix-Vector Multiplication

机译:密度矩阵重整化组方法中特征值求解器的高性能计算:哈密顿矩阵-矢量乘法的并行化

获取原文
获取原文并翻译 | 示例

摘要

The Density Matrix Renormalization Group (DMRG) method is widely used by computational physicists as a high accuracy tool to obtain the ground state of large quantum lattice models. Since the DMRG method has been originally developed for 1-D models, many extended method to a 2-D model have been proposed. However, some of them have issues in term of their accuracy. It is expected that the accuracy of the DMRG method extended directly to 2-D models is excellent. The direct extension DMRG method demands an enormous memory space. Therefore, we parallelize the matrix-vector multiplication in iterative methods for solving the eigenvalue problem, which is the most time-and memory-consuming operation. We find that the parallel efficiency of the direct extension DMRG method shows a good one as the number of states kept increases.
机译:密度矩阵重归一化组(DMRG)方法被计算物理学家广泛用作获取大型量子晶格模型基态的高精度工具。由于DMRG方法最初是为1-D模型开发的,因此提出了许多扩展到2-D模型的方法。但是,其中一些在准确性方面存在问题。可以预期,直接扩展到二维模型的DMRG方法的准确性非常好。直接扩展DMRG方法需要巨大的存储空间。因此,我们用迭代方法并行处理矩阵-向量乘法,以解决特征值问题,这是最耗时和最消耗内存的操作。我们发现,随着扩展状态数的增加,直接扩展DMRG方法的并行效率显示出很好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号