首页> 外文会议>Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics >Efficient Parallel Transport in the Group of Diffeomorphisms via Reduction to the Lie Algebra
【24h】

Efficient Parallel Transport in the Group of Diffeomorphisms via Reduction to the Lie Algebra

机译:通过还原到李代数,在微差同构群中进行有效的并行传输

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an efficient, numerically stable algorithm for parallel transport of tangent vectors in the group of diffeomorphisms. Previous approaches to parallel transport in large deformation diffeomor-phic metric mapping (LDDMM) of images represent a momenta field, the dual of a tangent vector to the diffeomorphism group, as a scalar field times the image gradient. This "scalar momenta" constraint couples tangent vectors with the images being deformed and leads to computationally costly horizontal lifts in parallel transport. This paper uses the vector momenta formulation of LDDMM, which decouples the diffeomorphisms from the structures being transformed, e.g., images, point sets, etc. This decoupling leads to parallel transport expressed as a linear ODE in the Lie algebra. Solving this ODE directly is numerically stable and significantly faster than other LDDMM parallel transport methods. Results on 2D synthetic data and 3D brain MRI demonstrate that our algorithm is fast and conserves the inner products of the transported tangent vectors.
机译:本文提出了一种有效的,数值稳定的算法,用于差分同构组中切向量的并行传输。在图像的大形变衍射-量度映射(LDDMM)中,并行传输的先前方法表示为一个矩量场,即正切向量对微晶组的对数,即标量场乘以图像梯度。这种“标量动量”约束将切线矢量与正在变形的图像耦合在一起,并导致并行传输中计算量大的水平提升。本文使用LDDMM的矢量矩量公式,将微晶与解构结构(例如图像,点集等)解耦。这种解耦导致在Lie代数中表示为线性ODE的并行传输。直接求解该ODE在数值上是稳定的,并且比其他LDDMM并行传输方法快得多。在2D合成数据和3D脑MRI上的结果表明,我们的算法速度快,并且保留了所运输切线向量的内积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号