首页> 外文会议>Geometric Methods in Computer Vision >Orientation-based differential geometric representations for computer vision a
【24h】

Orientation-based differential geometric representations for computer vision a

机译:基于方向的计算机视觉微分几何表示

获取原文

摘要

Abstract: Orientation-based representations (OBR) have many advantages. Three orientation-based differential geometric representations in computer vision literature are critically examined. The three representations are the extended Gaussian image (EGI),$+3$/ the support function based representation (SFBR),$+5$/ and the generalized Gaussian image (GGI).$+4$/ The scope of unique representation, invariant properties from matching considerations, computation and storage requirements, and relations between the three representations are analyzed. It is shown that an OBR using any combination of local descriptors is insufficient to uniquely characterize a surface. It must contain either global descriptors or connectivity information. The GGI as it was introduced$+4$/ requires the mapping of one principal vector onto the unit sphere. It is shown in this paper that this is unnecessary. This reduces the storage requirement of a GGI by half, therefore, making it a more attractive representation. It is also concluded that if the intention is to reconstruct surfaces from their representations, a SFBR should be used. If the intention is recognition, a truly orientation-based representation such as the GGI should be used.!8
机译:摘要:基于方向的表示形式(OBR)具有许多优点。对计算机视觉文献中的三种基于方向的微分几何表示法进行了严格审查。这三种表示形式是扩展高斯图像(EGI),$ + 3 $ /基于支持功能的表示形式(SFBR),$ + 5 $ /和广义高斯图像(GGI)。$ + 4 $ /唯一表示形式的范围,从匹配考虑,计算和存储要求以及这三种表示之间的关系出发,分析了不变属性。结果表明,使用局部描述符的任意组合的OBR不足以唯一地表征表面。它必须包含全局描述符或连接性信息。引入的GGI $ + 4 $ /需要将一个主向量映射到单位球上。本文表明这是不必要的。这将GGI的存储需求减少了一半,因此使其更具吸引力。还得出结论,如果要根据其表示重建表面,则应使用SFBR。如果目的是识别,则应使用真正基于方向的表示形式,例如GGI。!8

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号