首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Orientation-based differential geometric representations for computer vision applications
【24h】

Orientation-based differential geometric representations for computer vision applications

机译:用于计算机视觉应用的基于方向的微分几何表示

获取原文
获取原文并翻译 | 示例

摘要

Orientation-based representations (OBR's) have many advantages. Three orientation-based differential geometric representations in computer vision literature are critically examined. The three representations are the extended Gaussian image (EGI), the support-function-based representation (SFBR), and the generalized Gaussian image (GGI). The scope of unique representation, invariant properties from matching considerations, computation and storage requirements, and relations between the three representations are analyzed. A constructive proof of the uniqueness of the SFBR for smooth surfaces is given. It is shown that an OBR using any combination of locally defined descriptors is insufficient to uniquely characterize a surface. It must contain either global descriptors or ordering information to uniquely characterize a surface. The GGI as it was originally introduced requires the recording of one principle vector. It is shown in this paper that this is unnecessary. This reduces the storage requirement of a GGI, therefore making it a more attractive representation. The key ideas of the GGI are to represent the multiple folds of a Gaussian image separately; the use of linked data structures to preserve ordering at all levels and between the folds; and the indexing of the data structures by the unit normal. It extends the EGI approach to a much wider range of applications.
机译:基于方向的表示(OBR)具有许多优点。对计算机视觉文献中的三种基于方向的微分几何表示法进行了严格审查。这三种表示形式是扩展高斯图像(EGI),基于支持功能的表示形式(SFBR)和广义高斯图像(GGI)。分析了唯一表示的范围,匹配考虑的不变性质,计算和存储要求以及这三种表示之间的关系。给出了SFBR对于光滑表面的唯一性的建设性证明。结果表明,使用局部定义描述符的任意组合的OBR不足以唯一地表征表面。它必须包含全局描述符或订购信息以唯一地表征表面。最初引入的GGI需要记录一个主向量。本文表明这是不必要的。这减少了GGI的存储需求,因此使其更具吸引力。 GGI的主要思想是分别代表高斯图像的多重折叠。使用链接的数据结构来保持各个级别以及折叠之间的顺序;并以单位法线索引数据结构。它将EGI方法扩展到更广泛的应用范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号