首页> 外文会议>Frontiers in algorithmics and algorithmic aspects in information and management >Independent Domination: Reductions from Circular- and Triad-Convex Bipartite Graphs to Convex Bipartite Graphs
【24h】

Independent Domination: Reductions from Circular- and Triad-Convex Bipartite Graphs to Convex Bipartite Graphs

机译:独立支配:从圆形和三重凸二分图减少到凸二分图

获取原文
获取原文并翻译 | 示例

摘要

An independent dominating set in a graph is a subset of vertices, such that no edge has both ends in the subset, and each vertex either itself is in the subset or has a neighbor in the subset. In a convex bipartite (circular convex bipartite, triad convex bipartite, respectively) graph, there is a linear ordering (a circular ordering, a triad, respectively) defined on one class of vertices, such that for every vertex in the other class, the neighborhood of this vertex is an interval (a circular arc, a subtree, respectively), where a triad is three paths with a common end. The problem of finding a minimum independent dominating set, called independent domination, is known AAP-complete for bipartite graphs and tractable for convex bipartite graphs. In this paper, we make polynomial time reductions for independent domination from triad- and circular-convex bipartite graphs to convex bipartite graphs.
机译:图中的一个独立的支配集是顶点的子集,因此,没有边在子集中具有两端,并且每个顶点本身在子集中或在子集中具有邻居。在凸二分图(分别为圆形凸二分图,三重凸二分图)图中,在一类顶点上定义了线性有序(分别为圆形有序,三重),因此对于另一类顶点中的每个顶点,该顶点的邻域是一个区间(分别是圆弧和子树),其中三重轴是具有公共末端的三个路径。找到最小独立支配集(称为独立支配)的问题对于二部图是已知的AAP-complete,而对于凸二部图则是易处理的。在本文中,我们将多项式的约简时间从三元组和圆凸二分图到凸二分图进行了独立支配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号