首页> 外文会议>From Animals to Animats 9; Lecture Notes in Artificial Intelligence; 4095 >Dynamic Generation and Switching of Object Handling Behaviors by a Humanoid Robot Using a Recurrent Neural Network Model
【24h】

Dynamic Generation and Switching of Object Handling Behaviors by a Humanoid Robot Using a Recurrent Neural Network Model

机译:类人机器人通过递归神经网络模型动态生成和切换对象处理行为

获取原文
获取原文并翻译 | 示例

摘要

The present study describes experiments on a ball handling behavior learning that is realized by a small humanoid robot with a dynamic neural network model, the recurrent neural network with parametric bias (RNNPB). The present experiments show that after the robot learned different types of behaviors through direct human teaching, the robot was able to switch between two types of behaviors based on the ball motion dynamics. We analyzed the parametric bias (PB) space to show that each of the multiple dynamic structures acquired in the RNNPB corresponds with taught multiple behavior patterns and that the behaviors can be switched by adjusting the PB values.
机译:本研究描述了通过具有动态神经网络模型,具有参数偏差的递归神经网络(RNNPB)的小型人形机器人实现的控球行为学习实验。当前的实验表明,在机器人通过直接的人类教学来学习不同类型的行为之后,该机器人能够基于球的运动动力学在两种类型的行为之间进行切换。我们分析了参数偏差(PB)空间,以显示RNNPB中获取的多个动态结构中的每一个都与教导的多个行为模式相对应,并且可以通过调整PB值来切换行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号