首页> 外文会议>Fourth International Workshop on Advanced Computational Intelligence >Application of three artificial intelligence techniques for operational problem solving in a CO2 capture process system
【24h】

Application of three artificial intelligence techniques for operational problem solving in a CO2 capture process system

机译:三种人工智能技术在CO 2 捕获过程系统中解决操作问题的应用

获取原文
获取原文并翻译 | 示例

摘要

A good understanding of the key process parameters and their intricate relationships is critical for improving effectiveness and efficiency of the post combustion CO2 capture process. The knowledge can help operators with prediction, control and decision-making. Although some critical parameters of the CO2 capture process, such as reboiler heat duty, have been discussed in the previous research, their significances of influence and the nature of their relationships that affects efficiency of the CO2 capture processes are not studied. This paper presents a study on exploring the key parameters of the amine-based post combustion CO2 capture process system at the International Test Centre of CO2 Capture (ITC) located in Regina, Saskatchewan of Canada. Three artificial intelligence (AI) techniques of sensitivity analysis (SA), artificial neural network (ANN), and neuro-fuzzy modeling were applied for modeling the historical data to identify the relationships among the key parameters. The knowledge obtained in this data modeling study can be useful for tackling the challenges in operation of the process system.
机译:对关键过程参数及其复杂关系的良好理解对于提高燃烧后CO 2 捕获过程的有效性和效率至关重要。这些知识可以帮助操作员进行预测,控制和决策。尽管在先前的研究中已经讨论了CO 2 捕获过程的一些关键参数,例如再沸器热负荷,但是它们的影响意义以及影响CO 2效率的关系的性质> 2 捕获过程尚未研究。本文旨在研究位于加拿大的CO 2 捕集国际测试中心(ITC)的胺基燃烧后CO 2 捕集过程系统的关键参数。加拿大萨斯喀彻温省里贾纳。灵敏度分析(SA),人工神经网络(ANN)和神经模糊建模的三种人工智能(AI)技术用于对历史数据进行建模,以识别关键参数之间的关系。在此数据建模研究中获得的知识可用于应对过程系统操作中的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号