首页> 外文会议>Fourth International Conference on Computational Intelligence, Modelling and Simulation. >License Plate Character Recognition via Signature Analysis and Features Extraction
【24h】

License Plate Character Recognition via Signature Analysis and Features Extraction

机译:通过签名分析和特征提取识别车牌字符

获取原文
获取原文并翻译 | 示例

摘要

A new algorithm for license plate character recognition is proposed on the basis of Signature analysis properties and features extraction. Signature analysis has been used to locate license plate region and its properties can be further utilised in supporting and affirming the license plate character recognition. This paper presents the implementation of Signature Analysis combined with Features Extraction to form feature vector for each character with a length of 56. The recognition stage utilised this vector to be trained in a simple multi-layer feed-forward back-propagation neural Network with 56 inputs and 34 neurons in its output layer. The network is trained with both ideal and noisy characters. The results obtained show that the proposed system is capable to recognise both ideal and non-ideal license plate characters. The system also capable to tackle the common character declassification problems due to similarity in characters.
机译:在签名分析特性和特征提取的基础上,提出了一种新的车牌字符识别算法。签名分析已用于定位车牌区域,并且其特性可进一步用于支持和确认车牌字符识别。本文提出了特征分析与特征提取相结合以形成长度为56的每个字符的特征向量的实现方法。识别阶段利用该向量在具有56的简单多层前馈反向传播神经网络中进行训练输入和其输出层中的34个神经元。该网络以理想和嘈杂的特征进行训练。获得的结果表明,所提出的系统能够识别理想和非理想的车牌字符。该系统还能够解决由于字符相似而导致的常见字符解密问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号