首页> 外文会议>Fourth International Conference on Computational Intelligence and Communication Networks. >Anti-noise Power Normalized Cepstral Coefficients for Robust Environmental Sounds Recognition in Real Noisy Conditions
【24h】

Anti-noise Power Normalized Cepstral Coefficients for Robust Environmental Sounds Recognition in Real Noisy Conditions

机译:抗噪功率归一化倒谱系数,用于在真实噪声条件下进行可靠的环境声音识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new robust environmental sounds recognition technology based on APNCC to improve the accuracy of environmental sounds recognition in real noisy conditions. First, a highly non-stationary noise estimation algorithm is applied for the noise power spectrum estimation. Second, to achieve noise reduction with less residual colored noise, we present a multi-band spectral subtraction. Then, the process of PNCC extraction is combined with the estimated clean environmental sounds to extract APNCC. Finally, using 70 subclasses of 4 classes of clean environmental sounds, the comparison experiments in different environments under different SNRs are constructed based on the combination of SVM classifier and different features, namely APNCC, PNCC and MFCC. The experimental results show that APNCC outperforms other features in average recognition accuracy and noise robustness, especially for conditions of SNRs lower than 30dB.
机译:本文提出了一种基于APNCC的鲁棒性环境声音识别新技术,以提高实际噪声条件下环境声音识别的准确性。首先,将高度不稳定的噪声估计算法应用于噪声功率谱估计。第二,为了实现减少残留色噪声较少的噪声,我们提出了一种多频带频谱减法。然后,将PNCC提取过程与估计的干净环境声音相结合,以提取APNCC。最后,利用SVM分类器和APNCC,PNCC和MFCC等不同特征的组合,利用4类干净的环境声音的70个子类,构建了在不同信噪比下不同环境下的对比实验。实验结果表明,APNCC在平均识别精度和噪声鲁棒性方面优于其他功能,尤其是在信噪比低于30dB的条件下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号