首页> 外文会议>Foundations of Intelligent Systems; Lecture Notes in Artificial Intelligence; 4203 >A Proximity Measure and a Clustering Method for Concept Extraction in an Ontology Building Perspective
【24h】

A Proximity Measure and a Clustering Method for Concept Extraction in an Ontology Building Perspective

机译:本体构建视角下的概念提取的一种邻近度量和聚类方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of clustering textual units in the framework of helping an expert to build a specialized ontology. This work has been achieved in the context of a French project, called Biotim, handling botany corpora. Building an ontology, either automatically or semi-automatically is a difficult task. We focus on one of the main steps of that process, namely structuring the textual units occurring in the texts into classes, likely to represent concepts of the domain. The approach that we propose relies on the definition of a new non-symmetrical measure for evaluating the semantic proximity between lemma, taking into account the contexts in which they occur in the documents. Moreover, we present a non-supervised classification algorithm designed for the task at hand and that kind of data. The first experiments performed on botanical data have given relevant results.
机译:在本文中,我们将在帮助专家建立专门的本体论的框架内研究将文本单元聚类的问题。这项工作是在一个名为Biotim的法国项目中完成的,该项目处理植物语料库。自动或半自动建立本体是一项艰巨的任务。我们专注于该过程的主要步骤之一,即将文本中出现的文本单元构造为可能代表领域概念的类。我们提出的方法依赖于一种新的非对称度量的定义,用于评估引理之间的语义接近度,同时考虑到它们在文档中出现的上下文。此外,我们提出了一种针对手头任务和此类数据的非监督分类算法。对植物数据进行的第一个实验已给出相关结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号