首页> 外文会议>Finite difference methods, theory and applications >Error Estimates of Four Level Conservative Finite Difference Schemes for Multidimensional Boussinesq Equation
【24h】

Error Estimates of Four Level Conservative Finite Difference Schemes for Multidimensional Boussinesq Equation

机译:多维Boussinesq方程的四层守恒有限差分格式的误差估计。

获取原文
获取原文并翻译 | 示例

摘要

A family of four level conservative finite difference schemes (FDS) for the multidimensional Boussinesq Equation is constructed and studied theoretically. A preservation of the discrete energy for this approach is established. We prove that the discrete solution of the FDS converges to the exact solution with a second order of convergence with respect to space and time mesh steps in the first discrete Sobolev norm and in the uniform norm. The numerical experiments for the one-dimensional problem confirm the theoretical rate of convergence and the preservation of the discrete energy in time.
机译:构造和研究了多维Bo​​ussinesq方程的四级保守有限差分格式(FDS)系列。建立了该方法的离散能量的保存。我们证明了FDS的离散解在第一个离散Sobolev规范和统一规范中相对于时空网格步长以第二阶收敛收敛到精确解。一维问题的数值实验证实了理论收敛速度并及时保留了离散能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号