首页> 外文会议>Fifth workshop on syntax, semantics and structure in statistical translation 2011. >Utilizing Target-Side Semantic Role Labels to Assist Hierarchical Phrase-based Machine Translation
【24h】

Utilizing Target-Side Semantic Role Labels to Assist Hierarchical Phrase-based Machine Translation

机译:利用目标侧语义角色标签协助基于层次短语的机器翻译

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a novel approach of utilizing Semantic Role Labeling (SRL) information to improve Hierarchical Phrase-based Machine Translation. We propose an algorithm to extract SRL-aware Synchronous Context-Free Grammar (SCFG) rules. Conventional Hiero-style SCFG rules will also be extracted in the same framework. Special conversion rules are applied to ensure that when SRL-aware SCFG rules are used in derivation, the decoder only generates hypotheses with complete semantic structures. We perform machine translation experiments using 9 different Chinese-English test-sets. Our approach achieved an average BLEU score improvement of 0.49 as well as 1.21 point reduction in TER.
机译:在本文中,我们提出了一种利用语义角色标记(SRL)信息来改进基于层次短语的机器翻译的新颖方法。我们提出了一种提取SRL感知的同步上下文无关文法(SCFG)规则的算法。常规的Hiero样式的SCFG规则也将在同一框架中提取。应用特殊的转换规则以确保在派生SRL感知的SCFG规则时,解码器仅生成具有完整语义结构的假设。我们使用9种不同的汉英测试集进行机器翻译实验。我们的方法使BLEU平均得分提高了0.49,而TER降低了1.21分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号