首页> 外文会议>Exploring science-based solutions and technologies >A Robotic Swarm for Spill Finding and Perimeter Formation
【24h】

A Robotic Swarm for Spill Finding and Perimeter Formation

机译:用于发现和形成周长的机器人群

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses issues surrounding deployment and tasking of a real-world collective of costeffective,rnsmall mobile robots. To escape the limitations of centralized control, this project distributesrncontrol using an innovative, multi-modal communication architecture including acoustical chirping,rninfrared, and radio frequency transmissions. This paper reports on the use of social potential fields –rnattractive and repulsive fields emitted by each robot -- as a means to coordinate group behavior andrnpromote the emergence of swarm intelligence as seen in a colony of ants or swarm of bees. A suite of C2rntools, AgentTools, has been developed to enable an operator to inject high-level domain knowledge andrnguidance into the behavior of the otherwise autonomous robots. The resulting system permits the user torninteract with functional groups, rather than issuing commands to each individual robot. Using the realworldrnrobot collective and C2 system, the Idaho National Engineering and Environmental Laboratory hasrnperformed experiments to empirically analyze the benefits and limitations associated with the use of manyrnsmall-scale robots. Experimental results point to fundamental advantages of distributed systems andrnindicate that our real-world implementation of social potential fields scales well to varying numbers ofrnrobots and improves performance in terms of time and reliability.
机译:本文讨论了围绕现实世界中具有成本效益的小型移动机器人的部署和任务分配问题。为了避免集中控制的局限性,该项目使用创新的多模式通信体系结构来分配控制权,其中包括声chi,红外和射频传输。本文报道了利用社会潜能场(每个机器人发出的引诱力和排斥力场)作为协调群体行为并促进群体智能的出现的一种方法,如在蚁群或蜜蜂群中看到的那样。已经开发了一套C2rntools,即AgentTools,以使操作员能够将高级领域的知识和指导注入到其他自治机器人的行为中。最终的系统允许用户与功能组进行交互,而不是向每个单独的机器人发出命令。爱达荷州国家工程和环境实验室使用现实世界中的机器人集体和C2系统,进行了实验,以实证分析与使用许多小型机器人相关的收益和局限性。实验结果指出了分布式系统的根本优势,并表明我们在现实世界中对社会潜能领域的实现可以很好地扩展到不同数量的机器人,并在时间和可靠性方面提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号