首页> 外文会议>Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; Lecture Notes in Computer Science; 4447 >Targeting Differentially Co-regulated Genes by Multiobjective and Multimodal Optimization
【24h】

Targeting Differentially Co-regulated Genes by Multiobjective and Multimodal Optimization

机译:通过多目标和多模式优化来靶向差异共调节基因

获取原文
获取原文并翻译 | 示例

摘要

A critical challenge of the postgenomic era is to understand how genes are differentially regulated in and between genetic networks. The fact that such co-regulated genes may be differentially regulated suggests that subtle differences in the shared as-acting regulatory elements are likely significant, however it is unknown which of these features increase or reduce expression of genes. In principle, this expression can be measured by microarray experiments, though they incorporate systematic errors, and moreover produce a limited classification (e.g. up/down regulated genes). In this work, we present an unsupervised machine learning method to tackle the complexities governing gene expression, which considers gene expression data as one feature among many. It analyzes features concurrently, recognizes dynamic relations and generates profiles, which are groups of promoters sharing common features. The method makes use of multiobjective techniques to evaluate the performance of profiles, and has a multimodal approach to produce alternative descriptions of same expression target. We apply this method to probe the regulatory networks governed by the PhoP/PhoQ two-component system in the enteric bacteria Escherichia coli and Salmonella enterica. Our analysis uncovered profiles that were experimentally validated, suggesting correlations between promoter regulatory features and gene expression kinetics measured by green fluorescent protein (GFP) assays.
机译:后基因组时代的一个关键挑战是要了解基因在遗传网络中以及遗传网络之间的差异调控方式。这种共同调节的基因可能被不同程度地调节的事实表明,共同起作用的调节元件中的细微差异可能是显着的,但是尚不清楚这些特征中的哪一个会增加或减少基因的表达。原则上,该表达可以通过微阵列实验来测量,尽管它们包含系统误差,而且产生的分类有限(例如上/下调基因)。在这项工作中,我们提出了一种无监督的机器学习方法来解决控制基因表达的复杂性,该方法将基因表达数据视为众多特征之一。它同时分析特征,识别动态关系并生成配置文件,这些文件是共享共同特征的启动子组。该方法利用多目标技术来评估配置文件的性能,并具有多模式方法来生成相同表达目标的替代描述。我们应用这种方法来探索由肠细菌大肠杆菌和肠沙门氏菌的PhoP / PhoQ两组分系统控制的调控网络。我们的分析发现了经过实验验证的图谱,表明启动子调控功能与通过绿色荧光蛋白(GFP)分析测得的基因表达动力学之间的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号