首页> 外文会议>Evolutionary and bio-inspired computation: Theory and applications V >Combined bio-inspired/evolutionary computational methods in cross-layer protocol optimization for wireless ad hoc sensor networks
【24h】

Combined bio-inspired/evolutionary computational methods in cross-layer protocol optimization for wireless ad hoc sensor networks

机译:无线自组织传感器网络跨层协议优化中的组合生物启发/进化计算方法

获取原文
获取原文并翻译 | 示例

摘要

Published studies have focused on the application of one bio-inspired or evolutionary computational method to the functions of a single protocol layer in a wireless ad hoc sensor network (WSN). For example, swarm intelligence in the form of ant colony optimization (ACO), has been repeatedly considered for the routing of data/information among nodes, a network-layer function, while genetic algorithms (GAs) have been used to select transmission frequencies and power levels, physical-layer functions. Similarly, artificial immune systems (AISs) as well as trust models of quantized data reputation have been invoked for detection of network intrusions that cause anomalies in data and information; these act on the application and presentation layers. Most recently, a self-organizing scheduling scheme inspired by frog-calling behavior for reliable data transmission in wireless sensor networks, termed anti-phase synchronization, has been applied to realize collision-free transmissions between neighboring nodes, a function of the MAC layer. In a novel departure from previous work, the cross-layer approach to WSN protocol design suggests applying more than one evolutionary computational method to the functions of the appropriate layers to improve the QoS performance of the cross-layer design beyond that of one method applied to a single layer's functions. A baseline WSN protocol design, embedding GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layers, respectively, is constructed. Simulation results demonstrate the synergies among the bioinspired/ evolutionary methods of the proposed baseline design improve the overall QoS performance of networks over that of a single computational method
机译:已发表的研究集中于将一种生物启发或进化计算方法应用于无线自组织传感器网络(WSN)中单个协议层的功能。例如,蚁群优化(ACO)形式的群体智能已被反复考虑用于节点之间的数据/信息路由,网络层功能,而遗传算法(GA)已被用于选择传输频率和功率级别,物理层功能。同样,已经调用了人工免疫系统(AIS)以及量化数据信誉的信任模型来检测导致数据和信息异常的网络入侵。这些作用于应用程序和表示层。最近,一种受青蛙调用行为启发的自组织调度方案,用于在无线传感器网络中进行可靠的数据传输,称为反相同步,已被用于实现相邻节点之间的无冲突传输,这是MAC层的功能。与以前的工作有所不同的是,WSN协议设计的跨层方法建议将一种以上的进化计算方法应用于适当的层的功能,以提高跨层设计的QoS性能,而不仅仅是一种应用于单层的功能。分别构建了基线WSN协议设计,嵌入GA,反相同步,ACO和基于物理,MAC,网络和应用层的量化数据信誉的信任模型。仿真结果表明,所提出的基线设计的生物启发/进化方法之间的协同作用比单一计算方法提高了网络的整体QoS性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号