首页> 外文会议>EuroVR international conference on virtual reality, and augmented reality >Machine Learning Based Interaction Technique Selection for 3D User Interfaces
【24h】

Machine Learning Based Interaction Technique Selection for 3D User Interfaces

机译:基于机器学习的3D用户界面交互技术选择

获取原文

摘要

A 3D user interface can be adapted in multiple ways according to each user's needs, skills and preferences. Such adaptation can consist in changing the user interface layout or its interaction techniques. Personalization systems which are based on user models can automatically determine the configuration of a 3D user interface in order to fit a particular user. In this paper, we propose to explore the use of machine learning in order to propose a 3D selection interaction technique adapted to a target user. To do so, we built a dataset with 51 users on a simple selection application in which we recorded each user profile, his/her results to a 2D Fitts Law based pre-test and his/her preferences and performances on this application for three different interaction techniques. Our machine learning algorithm based on Support Vector Machines (SVMs) trained on this dataset proposes the most adapted interaction technique according to the user profile or his/her result to the 2D selection pre-test. Our results suggest the interest of our approach for personalizing a 3D user interface according to the target user but it would require a larger dataset in order to increase the confidence about the proposed adaptations.
机译:3D用户界面可以根据每个用户的需求,技能和偏好以多种方式进行调整。这种适应可以包括改变用户界面布局或其交互技术。基于用户模型的个性化系统可以自动确定3D用户界面的配置,以适合特定用户。在本文中,我们建议探索机器学习的用途,以便提出适合目标用户的3D选择交互技术。为此,我们在一个简单的选择应用程序上建立了一个拥有51个用户的数据集,在其中记录了每个用户的个人资料,其结果基于2D Fitts Law的预测试以及他/她在三种不同情况下对该应用程序的偏好和表现互动技巧。我们基于在此数据集上训练的支持向量机(SVM)的机器学习算法根据用户个人资料或他/她对2D选择预测试的结果,提出了最适合的交互技术。我们的结果表明,根据目标用户对3D用户界面进行个性化设置的方法很有趣,但为了增加对拟议改编的置信度,将需要更大的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号