首页> 外文会议>European signal processing conference;EUSIPCO 2011 >MUSICAL INSTRUMENTS SIGNAL ANALYSIS AND RECOGNITION USING FRACTAL FEATURES
【24h】

MUSICAL INSTRUMENTS SIGNAL ANALYSIS AND RECOGNITION USING FRACTAL FEATURES

机译:分形特征的乐器信号分析与识别

获取原文

摘要

Analyzing the structure of music signals at multiple time scales is of importance both for modeling music signals and their automatic computer-based recognition. In this paper we propose the multi-scale fractal dimension profile as a descriptor useful to quantify the multiscale complexity of the music waveform. We have experimentally found that this descriptor can discriminate several aspects among different music instruments. We compare the descriptive-ness of our features against that of Mel frequency cepstral coefficients (MFCCs) using both static and dynamic classifiers, such as Gaussian mixture models (GMMs) and hidden Markov models (HMMs). The methods and features proposed in this paper are promising for music signal analysis and of direct applicability in large-scale music classification tasks.
机译:在多个时间尺度上分析音乐信号的结构对于建模音乐信号及其基于计算机的自动识别都很重要。在本文中,我们提出了多尺度分形维轮廓作为描述符,可用于量化音乐波形的多尺度复杂度。我们通过实验发现,该描述符可以区分不同乐器之间的几个方面。我们使用静态和动态分类器(例如高斯混合模型(GMM)和隐马尔可夫模型(HMM)),将特征的描述性与梅尔频率倒谱系数(MFCC)进行比较。本文提出的方法和功能有望用于音乐信号分析,并在大规模音乐分类任务中具有直接的适用性。

著录项

  • 来源
  • 会议地点 Barcelona(ES);Barcelona(ES)
  • 作者单位

    School of Electr. & Comp. Enginr. National Technical University of Athens 15773 Athens Greece nzlat@cs.ntua.gr;

    School of Electr. & Comp. Enginr. National Technical University of Athens 15773 Athens Greece maragos@cs.ntua.gr;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号