首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Musical Instrument Recognition in Polyphonic Audio Using Missing Feature Approach
【24h】

Musical Instrument Recognition in Polyphonic Audio Using Missing Feature Approach

机译:基于缺失特征方法的和弦音频中的乐器识别

获取原文
获取原文并翻译 | 示例

摘要

A method is described for musical instrument recognition in polyphonic audio signals where several sound sources are active at the same time. The proposed method is based on local spectral features and missing-feature techniques. A novel mask estimation algorithm is described that identifies spectral regions that contain reliable information for each sound source, and bounded marginalization is then used to treat the feature vector elements that are determined to be unreliable. The mask estimation technique is based on the assumption that the spectral envelopes of musical sounds tend to be slowly-varying as a function of log-frequency and unreliable spectral components can therefore be detected as positive deviations from an estimated smooth spectral envelope. A computationally efficient algorithm is proposed for marginalizing the mask in the classification process. In simulations, the proposed method clearly outperforms reference methods for mixture signals. The proposed mask estimation technique leads to a recognition accuracy that is approximately half-way between a trivial all-one mask (all features are assumed reliable) and an ideal “oracle” mask.
机译:描述了一种用于在多声音频信号中同时识别多个声源的乐器识别中的乐器的方法。所提出的方法基于局部光谱特征和缺失特征技术。描述了一种新颖的掩模估计算法,该算法可识别包含每个声源可靠信息的频谱区域,然后使用有限边缘化处理确定为不可靠的特征向量元素。掩膜估计技术基于这样的假设:音乐声音的频谱包络随对数频率的变化趋于缓慢变化,因此,不可靠的频谱分量可被检测为与估计的平滑频谱包络的​​正偏差。提出了一种计算效率高的算法,用于在分类过程中边缘化边缘。在仿真中,所提出的方法明显优于混合信号的参考方法。提出的掩码估计技术可导致识别精度大约在琐碎的全一掩码(假定所有功能都是可靠的)和理想的“ oracle”掩码之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号