【24h】

Self-aligned Hermetic Packaging Using Eutectic SnPb Solder and Cr/Ni/Cu Metallization Layer

机译:使用共晶锡铅焊料和Cr / Ni / Cu金属化层的自对准密封包装

获取原文
获取原文并翻译 | 示例

摘要

This paper reports an easy, low cost, and low temperature hermetic packaging technology utilizing eutectic SnPb solder and Cr/Ni/Cu bonding pad. We investigate the bonding results of silicon-silicon as well as silicon-glass and glass-glass bonding. Most hermetic packaging technologies require a bonding temperature higher than 300℃. Because some devices are sensitive to temperature that decreases their functionalities, two localized heating technology have been proposed. One technology generates heat via built-in-microheaters on the silicon substrate. Another localized heating technology utilizes microwave as a heating source. However, both technologies require high cost and cannot be implemented for mass production. Furthermore, local heating creates a large temperature gradient. The stress causes crack on the substrates, thus limiting the selection of substrate materials. We choose eutectic tin-lead with the melting temperature of 183℃. Metal thin films we choose is also similar to the under bump metallurgy used for flip chip technology. The advantage of solder is its metal property. With a width of a few micrometers, metal can block moisture for over a decade. In addition, solder is known to pertain self-aligning property in flip chip technology. Other kind of solders can also be applied for hermetic packaging as well. Shie et al have tested In-Sn as bonding using the reflow temperature as low as 120℃. Seong-A Kim et. al have tested Au-Sn solder line at 400℃ Due to the difference in melting points, the application of Sn-Pb, Au-Sn and In-Sn can be different. Bonding characteristic of our design is investigated on three different setups: silicon-silicon, silicon-glass, and glass glass samples. (Fig. 1) This experiment consists of three different setups: silicon-to-silicon bonding, silicon-to-glass bonding, and glass-to-glass bonding. These three different setups utilize the same bonding method. The design includes square patterns and circle patterns of 500 μm width as shown in Figure 2. Schematic process flow of sample fabrication is demonstrated in Figure 3. Substrate and cap have identical size with the pattern of square of 1 cm in width or circle of 1cm in diameter. The bonding pad is composed of three layers of metal from bottom to top: 500A of chromium, 2000 A of nickel and 6000 A of copper.(Fig.3b) Eutectic SnPb solder is reflowed on square or circle patterns on a hot plate at room ambient.(Fig.3d) Sample pairs are then bonded on a hot plate at 200℃ for about 1.5 minutes for silicon-silicon and silicon glass bonding and 3 minutes for glass-glass bonding.(Fig.3e) Before placing the sample pairs on the hot plate, for glass-glass and glass-silicon bonding, we align a pair of chips of matched pattern by visual alignment. For silicon-silicon bonding, we align two chips along the dividing lines. Figure 4a and 4b show a glass and a silicon sample after solder reflow respectively. Sample pairs after bonding process are seen in Figure 5a through 5c. Figures 6a through 6c show the cross-sectional picture of the joint. Figures 6b and 6c are enlarged pictures of left and right side of the joints respectively. The average misalignment is 11.2 μm and 13.6 μm for square and circle samples respectively. Bonding strength of the three setups ranges from 3 MPa to 10 MPa. For leakage rate test, a 3 mm hole in diameter was drilled under the sealed area on the substrate side, followed by connecting a glass pipe to the hole by frit glass. The setup can be pumped down to the order of 10~(-1) torr.
机译:本文报道了一种使用共晶SnPb焊料和Cr / Ni / Cu焊盘的简便,低成本,低温密封技术。我们研究了硅硅键合的结果以及硅玻璃和玻璃玻璃的键合。大多数气密包装技术要求粘合温度高于300℃。由于某些设备对降低其功能的温度敏感,因此提出了两种局部加热技术。一种技术是通过硅基板上的内置微型加热器产生热量。另一种局部加热技术利用微波作为加热源。但是,这两种技术都需要高成本,并且不能实现批量生产。此外,局部加热会产生较大的温度梯度。应力在基板上引起裂纹,从而限制了基板材料的选择。我们选择熔点为183℃的共晶锡铅。我们选择的金属薄膜也类似于倒装芯片技术所使用的凸点下冶金。焊料的优点是其金属性能。金属具有几微米的宽度,可以阻挡湿气超过十年。另外,已知在倒装芯片技术中焊料具有自对准特性。其他类型的焊料也可以用于密封包装。 Shie等人使用低至120℃的回流温度测试了In-Sn的键合。金城A等由于熔点的不同,Sn-Pb,Au-Sn和In-Sn的应用可能会有所不同,等人已经在400℃下测试了Au-Sn焊锡线。我们在三种不同的设置下研究了我们设计的键合特性:硅硅,硅玻璃和玻璃玻璃样品。 (图1)该实验包含三种不同的设置:硅与硅的键合,硅与玻璃的键合以及玻璃与玻璃的键合。这三种不同的设置使用相同的绑定方法。该设计包括正方形图案和宽度为500μm的圆形图案,如图2所示。样品制造的示意性工艺流程如图3所示。基板和盖的尺寸与宽度为1厘米的正方形或宽度为1厘米的正方形的图案相同在直径上。焊盘由下至上由三层金属组成:铬500A,镍2000A和铜6000A。(图3b)共晶SnPb焊料在室温下在加热板上以正方形或圆形形式回流。然后将样品对在200℃的热板上粘合约1.5分钟以进行硅-硅和硅玻璃粘合,并在3分钟内进行玻璃-玻璃粘合。(图3e)在放置样品对之前在热板上,对于玻璃-玻璃和玻璃-硅键合,我们通过视觉对准来对准一对匹配图案的芯片。对于硅-硅键合,我们沿着分隔线对齐两个芯片。图4a和4b分别显示了焊料回流后的玻璃和硅样品。结合过程后的样品对如图5a至5c所示。图6a至图6c示出了接头的截面图。图6b和6c分别是接头左侧和右侧的放大图。正方形和圆形样品的平均未对准分别为11.2μm和13.6μm。三种设置的粘结强度范围为3 MPa至10 MPa。为了进行泄漏率测试,在基板侧的密封区域下钻一个直径为3 mm的孔,然后用玻璃料将玻璃管连接到该孔。设置可抽至10〜(-1)托的量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号