首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >Self-aligned Hermetic Packaging Using Eutectic SnPb Solder and Cr/Ni/Cu Metallization Layer
【24h】

Self-aligned Hermetic Packaging Using Eutectic SnPb Solder and Cr/Ni/Cu Metallization Layer

机译:采用共晶SNPB焊料和Cr / Ni / Cu金属化层自对的密封包装

获取原文

摘要

This paper reports an easy, low cost, and low temperature hermetic packaging technology utilizing eutectic SnPb solder and Cr/Ni/Cu bonding pad. We investigate the bonding results of silicon-silicon as well as silicon-glass and glass-glass bonding. Most hermetic packaging technologies require a bonding temperature higher than 300°C. Because some devices are sensitive to temperature that decreases their functionalities, two localized heating technology have been proposed. One technology generates heat via built-in-microheaters on the silicon substrate. Another localized heating technology utilizes microwave as a heating source [1]. However, both technologies require high cost and cannot be implemented for mass production. Furthermore, local heating creates a large temperature gradient. The stress causes crack on the substrates, thus limiting the selection of substrate materials. We choose eutectic tin-lead with the melting temperature of 183°C. Metal thin films we choose is also similar to the under bump metallurgy used for flip chip technology. The advantage of solder is its metal property. With a width of a few micrometers, metal can block moisture for over a decade. In addition, solder is known to pertain self-aligning property in flip chip technology. Other kind of solders can also be applied for hermetic packaging as well. Shie et al have tested In-Sn as bonding using the reflow temperature as low as 120 °C [2]. Seong-A Kim et. al have tested Au-Sn solder line at 400°C [3,4]. Due to the difference in melting points, the application of Sn-Pb, Au-Sn and In-Sn can be different. Bonding characteristic of our design is investigated on three different setups: silicon-silicon, silicon-glass, and glass-glass samples. (Fig.1) This experiment consists of three different setups: silicon-to-silicon bonding, silicon-to-glass bonding, and glass-to-glass bonding. These three different setups utilize the same bonding method. The design includes square patterns and circle patterns of 500 μm width as shown in Figure 2. Schematic process flow of sample fabrication is demonstrated in Figure 3. Substrate and cap have identical size with the pattern of square of 1 cm in width or circle of 1cm in diameter. The bonding pad is composed of three layers of metal from bottom to top: 500A of chromium, 2000 A of nickel and 6000 A of copper.(Fig.3b) Eutectic SnPb solder is reflowed on square or circle patterns on a hot plate at room ambient.(Fig.3d) Sample pairs are then bonded on a hot plate at 200°C for about 1.5 minutes for silicon-silicon and silicon glass bonding and 3 minutes for glass-glass bonding.(Fig.3e) Before placing the sample pairs on the hot plate, for glass-glass and glass-silicon bonding, we align a pair of chips of matched pattern by visual alignment. For silicon-silicon bonding, we align two chips along the dividing lines. Figure 4a and 4b show a glass and a silicon sample after solder reflow respectively. Sample pairs after bonding process are seen in Figure 5a through 5c. Figures 6a through 6c show the cross-sectional picture of the joint. Figures 6b and 6c are enlarged pictures of left and right side of the joints respectively. The average misalignment is 11.2 μm and 13.6 μm for square and circle samples respectively. Bonding strength of the three setups ranges from 3 MPa to 10 MPa. For leakage rate test, a 3 mm hole in diameter was drilled under the sealed area on the substrate side, followed by connecting a glass pipe to the hole by frit glass. The setup can be pumped down to the order of 10{sup}(-8) torr.
机译:本文报道了一种简单,成本低,并利用共晶锡铅焊料和Cr /镍/铜焊盘低温气密封装技术。我们调查硅 - 硅的粘结效果以及硅玻璃和玻璃 - 玻璃粘接。最气密封装技术需要的粘结温度高于300℃更高。因为有些设备是到降低它们的功能对温度敏感的,两个局部加热技术已经被提出。一个技术通过在硅衬底上内置-微加热器产生热量。另一局部加热技术利用微波作为加热源的[1]。然而,这两种技术都需要成本高,批量生产无法实施。此外,局部加热产生大的温度梯度。的应力引裂纹在基片上,从而限制了衬底材料的选择。我们选择的铅锡合金具有183℃的熔点。金属薄膜,我们选择也正在使用倒装芯片技术凸点冶金相似。焊料的优点是它的金属特性。用几微米的宽度,金属可以在十年阻挡湿气。此外,焊料已知在倒装芯片技术涉及自对准特性。其他类型的焊料也可以应用于用于密封封装,以及。士谔等人已经使用回流温度低至120℃[2]测试的In-Sn为接合。晟-A Kim等。人已在400℃下[3,4]测试Au-Sn系焊料线。由于熔点差,锡 - 铅,Au-Sn系和In-Sn的应用可以是不同的。硅 - 硅,硅玻璃和玻璃 - 玻璃样本:我们设计的粘接特性在三个不同的设置进行了研究。 (图1)该实验包括三个不同的设置:硅 - 硅键,硅 - 玻璃粘结,和玻璃 - 玻璃粘结。这三个不同的设置使用相同的接合方法。该设计包括正方形图案与500μm宽的圆图案如图样品制造的图2示意性工艺流程是体现在图3中底物和帽具有相同的尺寸与正方形的1厘米宽或1厘米的圆的图案在直径上。焊盘是由三层金属从底部到顶部:铬的500A,镍的2000 A和铜的6000 A(图3b)共晶的SnPb焊料回流上方形或圆形图案上在室温的热板上环境。(图3d)样品对随后结合在在200℃的热板上进行约1.5分钟硅 - 硅和硅玻璃粘合和3分钟玻璃 - 玻璃粘结。(图3e)将所述样品之前在热板上对,对玻璃 - 玻璃和玻璃 - 硅键,我们通过视觉对准对齐一对匹配的模式的芯片。对于硅 - 硅键,我们对齐两个芯片沿分割线。图4A和图4B分别示出了焊料回流之后的玻璃和硅样品。贴合工序后的样品对通过图5c看出在图5a中。图6a到6c示出的接头的横截面图片。图6b和6c分别放大关节的左,右侧的照片。平均偏差为11.2微米和13.6分别为微米正方形和圆形样品。三个设置的接合强度的范围为3兆帕至10兆帕。对于泄漏率试验,在直径3毫米的孔被在基板侧密封区域,随后通过在玻璃配管连接到由熔结玻璃的孔下钻孔。设置可以被泵抽至10 {SUP}的顺序( - 8)托。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号