首页> 外文会议>Environmental management and engineering >EXTENDED KALMAN FILTERING TO IMPROVE THE ACCURACY OF A SUBSURFACE CONTAMINANT TRANSPORT MODEL
【24h】

EXTENDED KALMAN FILTERING TO IMPROVE THE ACCURACY OF A SUBSURFACE CONTAMINANT TRANSPORT MODEL

机译:扩展卡尔曼滤波以提高表面污染物运输模型的准确性

获取原文
获取原文并翻译 | 示例

摘要

Modeling the behavior of contaminants during thernsubsurface flow through soil is important in predicting thernfate of the pollutants, in risk assessment, and as arnpreliminary step of the mitigation process. A tworndimensional transport model with advection andrndispersion is used as the deterministic model of arnconservative contaminant transport in the subsurface.rnWith the system model alone it is very difficult to predictrnthe true dynamic state of the pollutant. Therefore, wernneed observation data to guide the deterministic systemrnmodel to assimilate true state of contaminant. AnrnExtended Kalman Filter (EKF), which is essentially a firstrnorder approximation to an infinite dimensional problem,rnis used to predict the contaminant plume transport. Arntraditional root mean square error (RMSE) of pollutantrnconcentrations is used to examine the effectiveness of thernEKF in contaminant transport modeling. The experimentrnshows that EKF can reduce 74 to 91% of prediction errorsrncompare to the numerical method while working with thernfull set of observation data and comparing to thernanalytical solution.
机译:在地下土壤流经土壤过程中对污染物的行为进行建模,对于预测污染物的生成,进行风险评估以及作为缓解过程的初步步骤非常重要。具有对流和分散的二维输运模型被用作地下保守性污染物运移的确定性模型。仅凭系统模型,很难预测污染物的真实动态状态。因此,需要观测数据来指导确定性系统模型吸收污染物的真实状态。扩展卡尔曼滤波器(EKF)本质上是对无限维问题的一阶近似,用于预测污染物羽流的传输。污染物浓度的平方根均方根误差(RMSE)用于检验污染物运输模型中EKF的有效性。实验表明,EKF在处理全套观测数据并与解析解进行比较的同时,与数值方法相比,可以减少74%至91%的预测误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号