首页> 外文会议>Engineering applications of neural networks >A Window-Based Self-Organizing Feature Map (SOFM) for Vector Filtering Segmentation of Color Medical Imagery
【24h】

A Window-Based Self-Organizing Feature Map (SOFM) for Vector Filtering Segmentation of Color Medical Imagery

机译:基于窗口的自组织特征图(SOFM)用于彩色医学图像的矢量滤波分割

获取原文
获取原文并翻译 | 示例

摘要

Color image processing systems are used for a variety of purposes including medical imaging. Basic image processing algorithms for enhancement, restoration, segmentation and classification are modified since color is represented as a vector instead of a scalar gray level variable. Color images are regarded as two-dimensional (2-D) vector fields defined on some color space (like for example the RGB space). In bibliography, operators utilizing several distance and similarity measures are adopted in order to quantify the common content of multidimensional color vectors. Self-Organizing Feature Maps (SOFMs) are extensively used for dimensionality reduction and rendering of inherent data structures. The proposed window-based SOFM uses as multidimensional inputs color vectors defined upon spatial windows in order to capture the correlation between color vectors in adjacent pixels. A 3×3 window is used for capturing color components in uniform color space (L~*u~*v~*). The neuron featuring the smallest distance is activated during training. Neighboring nodes of the SOFM are clustered according to their statistical similarity (using the Mahalanobis distance). Segmentation results suggest that clustered nodes represent populations of pixels in rather compact segments of the images featuring similar texture.
机译:彩色图像处理系统用于多种目的,包括医学成像。修改了用于增强,恢复,分割和分类的基本图像处理算法,因为颜色表示为向量而不是标量灰度变量。彩色图像被视为在某些颜色空间(例如RGB空间)上定义的二维(2-D)矢量场。在书目中,采用了利用几种距离和相似性度量的运算符,以便量化多维颜色向量的共同内容。自组织特征图(SOFM)广泛用于降维和渲染固有数据结构。所提出的基于窗口的SOFM使用在空间窗口上定义的颜色矢量作为多维输入,以便捕获相邻像素中的颜色矢量之间的相关性。 3×3窗口用于捕获均匀颜色空间(L〜* u〜* v〜*)中的颜色分量。训练期间会激活距离最小的神经元。 SOFM的相邻节点根据它们的统计相似性进行聚类(使用马氏距离)。分割结果表明,聚簇节点代表具有相似纹理的图像的相当紧凑段中的像素种群。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号